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ABSTRACT

Flooding is a natural disaster that often occurs, it is not surprising that floods are one of the
problems that must be resolved in various countries, one of which is Indonesia. Flood is very
detrimental to the public because the impact could be the loss of material and non-material. A
flood protection system is needed and must be managed properly. This aims in management of
flood protection systems often requires efficient cost control strategies that are the lowest possible
long-term costs, but still meets the flood protection standards imposed by regulators in all plans. In
this paper a flood protection strategy is modeled using Adjustable Robust Optimization. In this
approach, there are two kinds of variables that must be decided, i.e., adjustable and non-adjustable
variables. A numerical simulation is presented using Scilab Software.

Keywords: Flood Protection Strategy, Uncertainty, Adjustable Robust Optimization, Scilab
Software.

INTRODUCTION

Natural disasters have often been heard by
everyone. According to Law No. 24 of 2007 on
Disaster Management, natural disasters are
defined as disasters caused by events or a series
of events caused by nature including
earthquakes, tsunamis, volcanic eruptions,
floods, droughts, hurricanes, and landslides.
Natural disasters such as volcanic eruptions,
earthquakes, tsunamis, hurricanes, forest fires,
landslides, floods and other natural disasters
often occur in many countries around the
world. Natural disasters that almost all
countries have experienced and become the
world's attention are flooding.

Flood sare an event where water in a
channel increases and exceeds its capacity
(Adi, 2013). Floods occur when the volume of
water in a body of water, such as rivers, deltas,
seas, overflows and causes water to come out
of the boundary of the water body so that it
soaks the surrounding land. Floods are caused
by various trigger factors both from natural and
human factors. Factors that causing floods are
among others due to very high rainfall, the
eradication of river water due to garbage and
mud, wrong management of urban spatial
planning and so forth. Floods have a bad
impact on humans and even harm humans.
These impacts can be either material or non-
material losses.

Indonesia is one country frequently hit by
natural disasters, especially floods. Indonesian
territory is located on the equator so that it
receives a lot of sun heat and high rainfall,

therefore Indonesia is prone to hydro
meteorological natural disasters such as floods,
droughts, large sea waves (Rianti, et al., 2016).
Badan Nasional Penanggulangan Bencana
(BNPB) noted that from the total hydro-
meteorological disasters that most often occur
in Indonesia are floods and landslides (DIBI
BNPB, 2012). The flood protection system is
very important in flood management. The area
at risk of flooding are protected by flood
protection system, namely by ring dikes
consisting of dikes, dams, dunes, plateaus, and
other water defense building. This flood
protection system must be managed properly,
so that flood protection standards can be met
and can prevent the occurrence of floods in the
area. According to Postek, et al., (2016), the
management of flood protection systems often
requires efficient cost control strategies that are
the lowest possible long-term costs, but still
meet the flood protection standards imposed by
regulators in all plans.

According to Postek, et al. (2016), there are
two challenges must be solved in modeling in
this paper. First, uncertainty. Many of the
important parameters that the underlying
strategy (eg sea level rise) is uncertain, and can
only be known in the future. This creates a
challenge called robustness in the uncertainty
of parameters. Therefore, according to Ben-Tal
& Nemirovski (2002), optimization problems
involving this uncertainty can be overcome by
using robust optimization because it guarantees
the problem is computationally tractability.
Decisions applied at the next stage need to be
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adjusted to the uncertainty values revealed. In
other words, every decision that will be applied
depends on the previous stages. So this
problem is categorized as a multistage
optimization problem. This creates a challenge
called adjustability to the uncertainty revealed.
Therefore, according to Gorisson et al. (2015),
multistage optimization problems can be
overcome by using Adjustable Robust
Counterpart (ARC).

The subject of this paper is to analyze how
the adjustable robust optimization model
addresses the problem of flood protection
strategies with uncertainty parameters.In this
paper, we discuss how the optimization model
with uncertainty and adjustability. Then a
numerical simulation was carried out with data
obtained from the journal Eijgenraam, et al.
(2012). Scilab software is used to assist in
conducting numerical simulations in this paper.

METHODS

Robust Optimization
According to Gorissen, et al. (2015), Robust
Optimization (RO) does not assume that the
probability distribution is known, but instead
assumes that uncertainty data is in what is called the
uncertainty set.According to Gorissen, et al. (2015),
the general forms of robust optimization model are
as follows:

xc
x

min

bAxts ..
  UbAc ,, (2.1)

where
nc  , nmA  , and mb  are the

uncertainty coefficients, and U isthe uncertainty set.
The robust optimization approach to changing

uncertainty problems (2.1) becomes a single
deterministic problem called the Robust Counterpart
(RC), namely:
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A vector x is called a robust  solution if for all

realization   UbAc ,, , x is feasible, and the

objective function value is guaranteed by  the
largest value.

The constraint in equation (2.2) can be changed
by considering the semi-definite robustness of
canonics as follows.
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where a is a vector in n dan b is a scalar

representing ia and ib . While U is representing iU .

Uncertainty parameter a and b , as well as set
uncertainty U can be converted into a primitive

factor form L , so that it can be written as
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where vector na  and scalar b is called

nominal, matrix LnP  and vector Lp  , and

set LZ  is an uncertainty set for primitive factor.
Then equation (2.4) can be substituted in equation
(2.3) by substituting a and b in expectation  to be
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representation of uncertainty by this primitive factor
is not required, but only for ease. To generate a U
which meets the representation (3.6), the
uncertainties in a and b are described by a simple
interval, namely:
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According to den Hertog, et al. (2015), this
Robust Counterpart cannot be solved directly with a
standard optimization method. The challenge in
Robust Optimization is to find the type of
uncertainty set that can be formulated as a
"tractable" optimization problem.

Adjustable Robust Counterpart (ARC)
According to Gorissen, et al. (2015), in the problem
of multistage optimization, a basic understanding of
robust optimization states that a "here and now"
decision can be relaxed.Ben-Tal, et al. (2009) used
parametric desicion rules for continuous adjustable
variables. Whereas the technique cannot be applied
to an adjustable integer variable. Adjustable Robust
Counterpart (ARC) is given as follows:

),,(min
,,

zyxc
zyx

      ZbzCyBxA   ;s.t. (2.7)

where 1nx  and 2ny  are the first stage
decision "here and now" variable created before

L is realized, 3nz  shows the second stage
decision "wait and see" variable which can be

adjusted to the actual data, and   11 nmA  and

  22 nmB  shows a matrix of the uncertainty
coefficients "here and now" variable and

  33 nmC  shows the matrix of the uncertainty
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coefficient "wait and see" variable. To get the
Adjustable Robust Counterpart Model with integer

variables, previously the uncertainty set, Z ,must be

divided into m subsets,  miZi ,1K where

 
U
K di

iZZ

,,1

 . Then, variable  miz n
i ,,13 K

is added where the decision is in the uncertainty
subsets iZ . Then, the objective function and the

constraint function in equation (2.7) are replicated

for each iz anduncertainty subsets iZ and without

reducing the generality of being
t

tzyx
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According to Gorissen, et al. (2015), Adjustable
Robust Counterpart Optimization (ARC) produces
more flexible decisions that can be adjusted
according to the realization of the amount of data at
a certain stage and produces the optimal robust
objective value that is as good as the standard
Robust Optimization approach. Dividingthe main
uncertaintyset Z intoseveral uncertainty subsets iZ

can increase objective value by giving more freedom
in making customized decisions, but the decision
maker must make a balance between optimalization
and computational complexity.

Box Uncertainty Set and Ellipsoidal Uncertainty
Set
According to den Hertog, et al. (2015), first robust
counterpart formulations are "tractable" for linear
robust optimization problems withthe uncertainty
box regions. One of the assumptions discussed
earlier is uncertainty is constraint-wise, so focus on
one constraint (and omit index i ):

   



:,bxPa (2.9)

x satisfies equation (2.9) if and only if x fulfills

bxPxa  

1
 (2.10)

Second, robust counterpart formulations are
"tractable" for linear robust optimization problems
with the uncertainty ellipsoidal regions. The form of
the Robust Counterpart becomes

   


2
:,bxPa (2.11)

x satisfies equation (2.11) if and only if x fulfills

bxPxa  

2
 (2.12)

RESULTS AND DISCUSSION

Adjustable Robust Optimization Model for
Flood Protection Strategies
Deterministic model of the problem of flood

protection strategies based can be seen in
Postek, et al. (2016). In this section, the
Adjustable Robust Optimization Model for
Flood Protection Strategies is discussed.
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The relative dike height requirements are
values that have been previously known.
According to Postek, et al. (2016), actually not
only based on flood protection standards, but
also on sea level rise. So it can be defined as

         , ,0
1

t

s t s sn n r





   (3.2)

The first step carried out in the Adjustable
Robust Optimization method is to determine
which parameters are indeterminate
parameters. In the matter of this flood
protection strategy, according to Postek, et al.
(2016), sea level rise may change to be
different from the predicted value. Therefore, it
can be assumed that the indeterminate
parameter in the problem of this flood
protection strategy is the parameter of sea level
rise,. So taking into account this uncertainty
factor, the parameter must be changed by
assuming to be

,r r Z U        (3.3)

Where the coefficient nr  is a nominal
data vector and is a confounding vector. The
objective function on the problem of flood
protection strategies is not affected by
indeterminate parameters, so the assumption
that the objective function is certainly fulfilled.

The second step carried out in the
Adjustable Robust Optimization method is to
determine the past variable which is an
adjustable variable. In the matter of this flood
protection strategy, according to Postek, et al.
(2016), a large-scale action plan is carried out
if something happens that causes flood
protection standards not met. For example, a
plan to repair or replace an embankment must
be carried out if there is a small or large
damage that requires repairs or replacement of



30 Determining Flood Protection Strategy …                    (Chaerani, et al)

the embankment. Therefore, this large-scale
action plan carried out must adjust to the
situation at a later stage of time. According to
Gorissen, et al. (2015), this is called a "wait
and see" decision and is not a "here and now"
decision, so that the large-scale action plan
decision variable, is an adjustable variable.
Large-scale action plan decision variables,, are
assumed to be in uncertainty. The uncertainty
set is divided into subsets, wherein, the
adjustable integer variable, is changed to where
the decision is in the set of uncertainty parts.

Before entering the adjustable robust
counterpart model, the objective function of the
flood protection strategy must be reviewed.

The objective function on the problem of
flood protection strategies is influenced by the
adjustable variable mty , , so to fulfill the

assumption that the objective function is of
course the objective function must be formed
into a certain objective function, which is to
form a single objective function f , so that it is

obtained.
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where mv is the surplu svariable with

TNm s  and nw is  theslackvariable with

sNTn  , f is the certain variableand 1u is

the slack variable.
The model above shows the problem of a

flood protection strategy that involves
uncertainty. The problem of flood protection
strategies has an objective function, which is to
minimize the total cost of all actions to be
taken. Actions to be taken in accordance with
flood protection standards. These actions
include raising dikes, and other large-scale
actions, such as repairing and replacing dikes,
changing the distribution of river water flow,
and others. The relative dike height
requirement in the second obstacle is
influenced by sea level rise whose value is
uncertain.

Adjustable Robust Counterpart (ARC)
Formulation for Flood Protection Strategies
Problem with box uncertaintyset.
Furthermore, it assumes that the uncertainty
parameter in the Adjustable Robust
Counterpart (ARC) formulation of the flood
protection strategy is within the set of box
uncertainty. Define the set of uncertainty boxes
as follows:
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Then suppose the set of uncertainty Z is
divided into a set of uncertainty parts 1Z and

2Z , where
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This implies that for 1i , the Robust
Counterpart becomes the following problem.
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For the case with 2i , the RC becomes
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Furthermore, Adjustable Robust
Counterpart (ARC) Formulation for Flood

Protection Strategies Problem with ellipsoidal
uncertainty set as a whole are as follows:

For 1i ,
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For 2i ,
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Numerical Simulation
The problem model of flood protection strategy
that has been formulated in theform of
Adjustable Robust Counterpart is applied using
a case study. Suppose there are 3sN dike

segments, ie dike 10 (first dike), dike 11
(second dike), and the dike 15 (third dike). In
each dike segment, the number of possible dike
increases is 3hN where the increase in the

dike is  300,200,100 cm.
The large-scale measures involved in this

case study is the plan to repair the damaged
dike. Assumed that 3mN . It is also assumed

that time is limited by  2,1T years. The
data used in this case study is sourced from the
journal Eijgenraam, et al. (2012) with the title
"Flood Prevention by Optimal Dike
Heightening" which can be seen in Table 4.1.

Table 4.1. The Cost of Dike Heightening h for Segment s

Dike (s)
The Cost of Dike Heightening ( hsp , )

cmh 100 cmh 200 cmh 300

1 91.18669 187.69112 311.14054
2 213.3 383.98 554.66
3 634.9991 2491.8794 8770.9412

Then, the repair plan for the damaged dike
is defined as 1m shows the repair plan on the
damaged dike 10 (first dike), 2m shows the
repair plan on the damaged dike 11 (second
dike), and 3 shows the repair plan on the

damaged dike 15 (third dike). Based on
simulation data, it can be seen in Table 4.2, the
costs are obtained for the plan to repair
damaged dikes.

Table 4.2. The Cost of Damaged Dike Repair m

The large-scale measures( m ) The Cost of Damaged Dike Repair ( mp )

1 246.95614

2 616.32898

3 9271.3268

It is assumed that the first year of the dike
was not damaged so it is not necessary dike
repairs and the impact of its application did not

exist. The impacts of implementing a plan to
repair damaged dikes in the second year can be
seen in Table 4.3.

Table 4.3. Impact of Implementing the Dike Repair Plan m in the Second Year on the Relative
Dike Height at Dike s in the Second Year

Action Plans
( m )

Impact of Plans ( tsma ,,,  )

Dike -1 Dike-2 Dike-3

1 200 0 0

2 0 200 0
3 0 0 200
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The model of flood protection strategy
problem which has been reformulated in the
form of Adjustable Robust Counterpart
involves uncertainty parameters, namely
parameters of sea level rise r where in the

previous sub-section r has been defined. This

parameter value is obtained by using the simple
interval based on den Hertog, et al. (2015), so
that with data from the journal Eijgenraam, et
al. (2012) can be seen in Table 4.4.

The aim of the flood protection strategies is
to create a schedule when to take various
measures that minimize the present value of the
measures costs such that at each time moment
and at each dike segment, the flood protection
standards are satisfied.(Postek, et al., 2016).

The numerical simulation result is that the
cost required in this flood protection strategy is
2945.7217 million euros for the deterministic
model, 3532.814 million euros for the worst-
case in the robust optimization model with box
uncertainty set (with %10 ), and 3781,2366
million euros for the worst-case in the
adjustable robust optimization model with
ellipsoidal uncertainty set.

The optimal Schedule for dike heightening
10, 11 and 15 of the Deterministic Model, the
Adjustable Robust Optimization Model with
Uncertainty Box Set, the Adjustable Robust
Optimization Model with Uncertainty
Ellipsoidal Set can be seen in Table 4.1-4.3.

Table 4.4. The Parameter Value r and 
 lr

ur r 
1 0.294 1.06 0.677 0.383

2 0.588 2.12 1.354 0.766

Table 4.5. Schedule for Dike Heightening 10, 11 and 15 of the Deterministic Model

Years
Dike Heightening(cm)

Dike 10 Dike 11 Dike 15

1 200 200 200

2 - - -

Table 4.6. Schedule of Dike Heightening 10, 11, and 15 of the Adjustable Robust Optimization
Model with Uncertainty Box Set

Years
Dike Heightening(cm)

Dike 10 Dike 11 Dike 15

1 200 200 200

2 - - 100

Table 4.7. Schedule of Dike Heightening 10, 11, and 15 of the Adjustable Robust Optimization
Model with Uncertainty Ellipsoidal Set

Years
Dike Heightening (cm)

Dike 10 Dike 11 Dike15

1 200 300 200

2 - - 100

Based on the simulation results above, the
dike heightening schedule on dikes 10, 11 and
15 with the deterministic model and the
adjustable robust optimization model have
some differences. The dike heightening costs
required in the deterministic model also have
lower costs compared to the dike heightening

costs required in the adjustable robust
optimization model. This is because the
adjustable robust optimization model involves
a factor in uncertain sea level rise. Sea level
rise is causing increased flood protection
standard, so it should be more measures must
be taken to fulfill the flood protection
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standards. This causes the costs required to
implement the measures will be even greater.

The flood protection strategy is made in
order to the flood protection system can work
well so that people can live more safely and
comfortably. If viewed only in terms of costs,
the adjustable robust optimization model is
indeed greater than the deterministic model.
But when viewed in terms of safety and
security standards, the adjustable robust
optimization model is much safer than the
deterministic model. Beside the problem of
flood protection strategies must in fact involve
all factors that can affect flood protection
standards. One of them is sea levels
rise.Although only by involving the sea level
rise factor, the adjustable robust optimization
model can better describe the actual problem
state. Therefore, it can be said that the
adjustable robust optimization model is better
compared to the deterministic model.

CONCLUSION

The Adjustable Robust Optimization model on
the flood protection strategies problem
involves the uncertainty factor of sea level rise
which is an uncertainty parameter.This
Adjustable Robust Optimization model is
solved by approaching the box uncertainty set
and the ellipsoidal uncertainty set. The Robust
Adjustable Optimization Model produces a
form of Linear Programming, so that the
Adjustable Robust Optimization model is
guaranteed to be computationally tractable. The
numerical simulation results of the Adjustable
Robust Optimization model on the flood
protection strategies problem with sea level rise
as an uncertainty parameter show the schedule
of when every measures must be taken so that
the cost of implementing the measures can be
as minimal as possible,but still fulfill the flood
protection standards.
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