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ABSTRACT 

 
The aim of this paper is to propose two new procedures for model selection in Neural Networks (NN) for time 

series forecasting. Firstly, we focused on the derivation of the asymptotic properties and asymptotic normality of 

NN parameters estimator. Then, we developed the model building strategies based on statistical concepts 

particularly statistics test based on the Wald test and the inference of R
2
incremental. In this paper, we employ these 

new procedures in two main approaches for model building in NN, i.e. fully bottom-up or forward scheme by 

using the inference of R
2
incremental, and the combination between forward (by using the inference of R

2
incremental) and 

top-down or backward (by implementing Wald test). Bottom-up approach starts with an empty model, whereas 

top-down approach begins with a large NN model. We used simulation data as a case study. The results showed 

that a combination between statistical inference of R
2
incremental and Wald test was an effective procedure for model 

selection in NN for time series forecasting. 

 

Keywords: Time series, neural networks, asymptotic normality, Wald test, R
2
incremental 

 
INTRODUCTION 

 

In recent years, an impressive array of 

publications has appeared claiming 

considerable successes of neural networks 

(NN) in data analysis and engineering 

applications. NN model is a prominent example 

of such a flexible functional form. The use of 

the NN model in applied work is generally 

motivated by a mathematical result stating that 

under mild regularity conditions, a relatively 

simple NN model is capable for approximating 

any Borel-measureable function to any given 

degree of accuracy (see e.g. Hornik et al. 1989, 

1990). 

 In the application of NN, it contains limited 

number of parameters (weights). How to find 

the best NN model, i.e. how to find an accurate 

combination between number of input variables 

and nodes in hidden layer, is a central topic on 

the some NN literatures that discussed on many 

articles and books (see e.g. Bishop 1995, 

Haykin 1999, Ripley 1996). In general, there 

are two procedures usually used to find the best 

NN model (the optimal architecture), those are 

“general-to-specific” or “top-down” and 

“specific-to-general” or “bottom-up” 

procedures. “Top-down” procedure is started 

from complex model and then applies an 

algorithm to reduce number of parameters by 

using some stopping criteria, whereas “bottom-

up” procedure works from a simple model. The 

first procedure in some literatures is also 

known as “pruning” (see Reed 1993), or 

“backward” method in statistical modeling. 

The second procedure is also known as 

“constructive learning” and one of the most 

popular is “cascade correlation” (see e.g. 

Fahlman & Lebiere 1990, Prechelt 1997), and 

it can be seen as “forward” method in statistical 

modeling. 

 The aim of this paper is to discuss and 

propose two new procedures for model 

selection in FFNN for time series forecasting. 

These procedures are developed based on the 

inference of R2 incremental and Wald test. The 

inference of R2 incremental is implemented on 

forward scheme, whereas Wald test is 

employed on backward scheme. We emphasize 

on the used of NN for time series forecasting. 

 

Feedforward neural networks 

Feed forward Neural Networks (FFNN) is the 

most popular NN models for time series 

forecasting applications. Figure 1 shows a 

typical three-layer FFNN used for forecasting 

purposes. The input nodes are the previous 

lagged observations, while the output provides 

the forecast for the future values. Hidden nodes 

with appropriate nonlinear transfer functions 

are used to process the information received by 

the input nodes. The model of FFNN in Figure 

1 can be written as:  

0
1 1

q p

t j ij t i oj t
j i

y y     
 

 
    

 
 

…… (1) 
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where 
p

 is the number of input nodes, 
q

 is 

the number of hidden nodes, 


 is a sigmoid 

transfer function such as the logistic, 

{ , 0,1, , }j j q 
 is a vector of weights from 

the hidden to output nodes and 

{ , 0,1, , ;ij i p 
 

1,2, , }j q
 are weights 

from the input to hidden nodes. Note that 

equation (1) indicates a linear transfer function 

is employed in the output node. 

 Functionally, the FFNN expressed in 

equation (1) is equivalent to a nonlinear AR 

model. This simple structure of the network 

model has been shown to be capable of 

approximating arbitrary function (see e.g. 

Hornik et al. 1989,1990). However, few 

practical guidelines exist for building a FFNN 

for a time series, particularly the specification 

of FFNN architecture in terms of the number of 

input and hidden nodes is not an easy task. 

 Kaashoek & Van Dijk (2002) introduced a 

“pruning” procedure by implementing three 

kinds of methods to find the best FFNN model; 

those are incremental contribution(R2 

incremental), principal component analysis, 

and graphical analysis. Whereas, Swanson and 

White (1995,1997) applied a criterion of model 

selection, SIC, on “bottom-up” procedure to 

increase number of nodes in hidden layer and 

input variables until finding the best FFNN 

model. 

 Recently, Suhartono et al. (2006) proposed 

a new forward procedure based on the 

statistical inference of R2 incremental 

contribution. 

 

Backpropagation algorithm 

Backpropagation algorithm is an algorithm that 

usually used to estimate the FFNN weights 

(parameters). Ripley (1996) stated that the 

existence of the function approximation was 

not useful if there was not known the way to 

find this function. This condition affected many 

researches about NN for many years. 

  The main idea of the approximation by 

using NN is started by Rumelhart-McClelland 

learning for fitting parameters by employing 

least squares method. The training of the NN 

involves adjusting the weights of the network 

such that the output generated by the network 

for the given input ( )kx
 is as “close” to 

( )
ˆ ( ; )ky f x w

 as possible. Formally, this can 

be formulated as the optimization problem by 

finding weights, 
( , )ij jw  

, to minimize 

 

2

( ) ( )
1

( ) ( ; )
n

k k
k

E w y f x w


 
 ……………. (2) 

 

as done in nonlinear regression (see e.g. Bates 

& Watts 1988, Seber & Wild 1989). 
 

 

 
 

 Figure 1. Architecture of neural network model with single hidden layer, i.e                   

three input units, four nodes in the hidden layer, and one output unit. 

.
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 Gradient descent is known as one of the 

oldest optimization methods. This method is 

based on a linear approximation of the error 

function given by 

( ) ( ) ( )TE w w E w w E w    ……………(3) 

The weights update is 

( ),   0w E w     ,   ………………..…(4) 

where   is learning rate. Suhartono et al. 

(2005) derived a corollary about back-

propagation algorithm to find the optimal 

weights of FFNN for time series forecasting as 

illustrated in  Figure 1. 

 
Asymptotic properties of FFNN estimator 

The large-sample properties of learning 

backpropagation in single hidden layer 

feedforward networks have been studied 

further by White (1989a, 1989b). The aim of 

learning networks by using backpropagation is 

to find the solution *w  on the optimization 

problem argmin ( )w W Q w , i.e.  

 * 2arg min ( ) [( ( , )) / 2
w W

w Q w E Y f X w


   ……(5) 

where *w  is index of an optimal networks.  

With squared error penalty, learning must 

arrive at *w , which solve  

 2 2min [( ( , )) / 2] ([ ( | )] / 2)
w W

E Y f X w E Y E Y X


  

2([ ( | ) ( , )] / 2)E E Y X f X w  …………….(6) 

Finding *w  is precisely the problem of finding 

the parameters of an optimal least squares 

approximation to ( | )E Y X , the conditional 

expectation of Y  given X . Specifically, given 

target/input pairs ( , )t tY X  with 1,2, ,t n , 

randomly drawn from the operating 

environment, then ˆ
nw  is the nonlinear least 

squares estimator, i.e.  

ˆ
nw 

1 2

1

arg min ( ) ( ( , )) / 2
n

n t t
w W t

Q w n Y f X w

 

  ……(7) 

 

Nonlinear regression is an established method 

that has been completely analyzed in statistics 

and econometrics literatures.   

White (1989b) provided a formal statement of 

condition sufficient to guarantee convergence 

of ˆ
nw , as stated in the following theorem.  

Theorem 2.1. (White 1989b). Let ( ,F, )P  be 

a complete probability space on which is 

defined the sequence of independent identically 

distributed random variables 

{ } ( : ,v
t tZ Z  1,2, )t  , vℕ

{1,2, } . Let : vl W     be a function 

such that for each w  in W , a compact subset 

of s , sℕ, ( , )l w  is measurable- v  (where 

v  is the Borel  -field generated by the open 

sets of v ), and for each z  in v , ( , )l z   is 

continuous on W . Suppose further that there 

exists : vd    such that for all w  in W , 

| ( , ) | ( )l z w d z  and ( ( ))tE d Z    (i.e., l  is 

dominated on W  by an integrable 

function).Then for each 1,2,n   there exists 

a solution ˆ
nw  to the problem 

1

1
ˆmin ( ) ( , )

n
w W n tt

Q w n l Z w
 

    and  

*ˆ . . ,nw W a s P   where *W 
*{ :w W  

*( ) ( )Q w Q w  

for all }w W , ( ) ( ( , ))tQ w E l Z w . 

 
Asymptotic normality of FFNN estimator 

The appropriate formal concept for studying 

the limiting distribution of ˆ
nw  is that of 

convergence in distribution. Asymptotic 

distribution of ˆ
nw  depends on the nature of 

*W . In general, *W  may consist of isolated 

points and/or isolated ”flat”. If convergence to 

a flat occurs, then the estimated weights ˆ
nw  

have a limiting distribution that can be 

analyzed using the theory of Phillips (1989) for 

“partially identified” models. These 

distributions belong to the “limiting mixed 

Gaussian” (LMG) family introduced by 

Phillips. When *w  is locally unique, the model 

is said to be “locally identified” and estimated 

weights ˆ
nw  converging to *w  have a limiting 

multivariate normal distribution.  

     The condition ensuring that ˆ
nw  is the 

multivariate normal distribution have been 

studied further by White (1989b). The 

following theorem is one of the results of 

White’s works. 

Theorem 2.2. (White 1989b). Let ( ,F, )P , 

{ }tZ , W  and l  be as in Theorem 2.1, and 

suppose that *ˆ  . . nw w a s P   where 
*w  is 

an isolated element of  *W  interior to W . 

Suppose in addition that for each z  in v , 

( , )l z   is continuously differentiable of order 2 

on W ; that * *( ( , ) ( , ))t tE l Z w l Z w    ; 
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that each element of 2l  is dominated on W  

by an integrable function; and that  
* 2 *( ( , ))tA E l Z w  and 

* * *( ( , ) ( , ) )t tB E l Z w l Z w     

are nonsingular ( )s s  matrices, where   and 

2  denote the ( 1)s  gradient and ( )s s  

Hessian operators with respect to w . 

 Then * *ˆ( ) (0, )
d

nn w w N C  , where 

* 1 1C A B A   . If in addition each element 

of l l   is dominated on W  by an integrable 

function, then ˆ  . . nC C a s P  , where 

1 1ˆ ˆ ˆˆ
n n n nC A B A  , and   

2

1
ˆ( , )

ˆ
n

t nt
n

l Z w
A

n







, 

1
ˆ ˆ( , ) ( , )

ˆ
n

t n t nt
n

l Z w l Z w
B

n


 




. 

 
White (1989a) stated that taking one Nonlinear 

Least Squares (NLS) Newton-Raphson step 

from the backpropagation estimator 

asymptotically equivalent to NLS. Thus, tests 

of hypotheses bases on ˆ
nw  can be conducted 

for selecting the optimal architecture of FFNN. 

 

Hypothesis testing by using wald test 

The Wald statistic allows the simplest analysis, 

although it may or may not the easiest statistic 

to compute in a given situation. The motivation 

for the Wald statistic is that when the null 

hypothesis is correct ˆ
nSw  should be close to 

 Sw s , so a value of ˆ
n Sw s  far from zero 

is evidence against the null hypothesis. 

 The theorem about Wald statistic that be 

used for hypothesis testing of parameters in NN 

model is constructed as the following results. 

Theorem 2.3.  (Suhartono 2007)  Let the 

conditions of Theorem 2.2 hold, i.e.  

 (i)  1/ 2 ˆ( ) ( , )
d

nn N  C w w 0 I , 

where '    1 1
C A B A , and 1

C  is (1)O , 

 

 (ii)   there exists a matrix ˆ
nB  positive 

semidefinite and symmetric such that 

ˆ
n

B B
p

0 .  Then ˆ
n

C C
p

0 , 

where 1 1ˆ ˆ ˆˆ
n n n n

 C A B A , and  

2

1
ˆ( , )

ˆ
n

t nt
n

l Z

n





 w

A ,   1
ˆ ˆ( , ) ( , )

ˆ
n

t n t nt
n

l Z l Z

n


 


 w w

B . 

 and, let rank( )S q k  .  Then under 

0 :H w s S , 

 (i)   1/ 2 ˆ( ) ( , )
d

n nn w s N  Γ S 0 I , 

where n ' Γ SC S
1 1' '  

SA B A S . 

 

 (ii)   The Wald statistic  
1 2ˆˆ ˆ( ) ( )

d
n n n n qW n w s w s    S Γ S ……(8) 

 where  ˆˆ
n n 'Γ SC S . 

Proof: We use Corollary 4.24, Proposition 

2.30 and Theorem 4.30 in White (1999) to 

prove Theorem 2.3 and the results are as 

follow: 

 (i) Under 0 ,H  ˆ ˆ )n n
  Sw s S(w w , so 

1/ 2 1/ 21/ 2 1/ 2ˆ ˆ( ) ( )n n n nn n
      Γ Sw s Γ SC C w w . 

 

It follows from Corollary 4.24 in White (1999) 

that n A S  and ˆ( )n nn  b w w , so that  

1/ 2 ˆ( ) ( , )
d

n nn N  Γ Sw s 0 I . 

 

 (ii) Based on Theorem 2.2 we have that 
.ˆ 0

a s
n

 C C , so it imply that 

ˆ 0
p

n
 C C . By using Proposition 2.30 in 

White (1999), where ˆˆ ( )n ngΓ C  and 

( )n g Γ C , so that ˆ 0
p

n n Γ Γ . Given 

the result in (i), i.e.  
1/ 2 ˆ( ) ( , )

d
n nn N  Γ Sw s 0 I , 

so by implementing Theorem 4.30 at [19], this 

yields                                                 
1 2ˆˆ ˆ( ) ( )

d
n n n n qW n w s w s    S Γ S .     

Thus, a test about the relevance (significance) 

of input where the hypothesis can be stated as 

0 : 0H w S  against 1 : 0H w S , can be 

evaluated by applying Theorem 2.3. As an 

example, Wald statistic to evaluate this 

hypothesis testing is  
1ˆ ˆ ˆ( )n n nW nw w    S SC S S ,where 

C  as defined 

in earlier section.  

 

Statistically inference of R
2
 incremental  

Suhartono et al. (2006) used statistical 

inference of R
2
 incremental contribution on the 

forward procedure to determine the best 

architecture of FFNN. This approach involves 

three basic steps, which can be described in the 

following theorem. 
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Theorem 2.4. (Suhartono 2007)  Let the 

Reduced Model is defined as 
( ) ( )ˆ( , )R R

t t n tY f X  w  ……………………(9) 

where Rl  is the number of parameters to be 

estimated. And, let the Full Model that is more 

complex than Reduced Model is defined as 
( ) ( )ˆ( , )F F

t t n tY f X  w ...............................(10) 

where Fl  is the number of parameters in the 

Full Model, F Rl l . Then, under 0 :H  w 0  

or testing for and additional parameters in the 

Full Model equal to zero, the F  statistic can 

be constructed, i.e.  

( ) ( ) ( ) ( )

( ) ( )

( ) /( )

/

R F R F

F F

SSE SSE df df
F

SSE df

 
 ……..(11) 

or

2
incremental ( ) ( )

2
( ) ( )

( )

(1 )

R F

F F

R df df
F

R df





………….(12) 

where 2 2 2
incremental ( ) ( )F RR R R  , ( )Rdf Rn l   

is degree of freedom at Reduced Model, and 

( )Fdf Fn l   is degree of freedom at Full 

Model. 

 
New procedures for ffnn model building. 

Based on the Wald test and statistically 

inference of R
2

incremental, we proposed two new 

procedures for FFNN model building that 

applied for time series forecasting. In the first 

step, nonlinearity test is employed to validate 

whether a nonlinear time series model must be 

used for analyzing the time series data.  

 These two algorithms are started with the 

same approach, i.e. forward scheme by using 

inference of R
2

incremental for determining the 

optimal number of hidden nodes. Then, the first 

procedure continues with the same forward 

scheme for selecting the optimal input units, 

and illustrated as Figure 2. Whereas, the second 

procedure uses backward scheme by 

implementing Wald test for selecting the 

optimal input units. This combination between 

inference of R
2

incremental and Wald test is 

illustrated in Figure 3. 

 

METHODS 

 
In this paper, these two new procedures are applied 

on the simulated data. The simulation experiment is 

carried out to show how the proposed FFNN 

modeling procedures work. Finally, the result is 

compared to the procedures proposed by Kaashoek  

& Van Dijk (2002) and Suhartono et al. (2006). 

Simulated data are generated as ESTAR 

(Exponential Smoothing Transition Auto-regressive) 

model, i.e. 

 
2

1 16.5 .exp( 0.25 )t t t ty y y u    …..…..(13)     

where  
2~ nid(0,0.5 )tu . 

 

Time series and the lags plots of this simulated data 

can be seen in Figure 4. We can observe that data 

follow nonlinear autoregressive pattern at lag 1. 

 

Empirical results 

In this section, the empirical results for the two 

proposed procedures as illustrated in Figure 2 and 3 

are presented and discussed. It contains three sub 

sections, i.e. the results of the first procedure by 

using inference of R2
incremental, the results of the 

second procedure by implementing combination 

between inference of R2
incremental and Wald test, and 

the comparison result of these two new procedures.  

 

The results of the first procedure  

In this procedure, firstly we apply the proposed 

forward procedure starting with a FFNN with six 

variable inputs 1 2 6( , , , )t t ty y y    and one 

constant input to find the optimal nodes in the 

hidden layer. It’s done by implementing inference of 

R2
incremental. The result of an optimization steps are 

reported in Table 1. Based on the results in Table 1, 

we can see that two hidden nodes are the optimal 

result and further optimization runs are not needed.  

    Then, we continue an optimization to find the 

optimal input units. The results are presented in 

Table 2. It shows that input unit 1, i.e. 1ty , is the 

optimal input unit of the network. Hence, the first 

procedure based on the forward scheme by 

implementing inference of R2
incremental yields the 

optimal network of FFNN with one input unit and 

two hidden nodes or FFNN(1,2). 

 
COMPARISON RESULTS 

 

There are two main evaluations for the 

comparison results between these two proposed 

procedures and other procedures proposed 

Kaashoek & Van Dijk (2002), i.e. the final 

result of FFNN architecture and the number of 

running steps. In general, the results of this 

simulation study show that the optimal FFNN 

architecture yielded by these procedures is the 

same, i.e. FFNN(1,2).  
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START 

 
 
 

Apply nonlinearity test for detecting  

nonlinear relationship in time series. 

 
 
 

Does nonlinearity test 
show that there is a nonlinear 

relationship? 

 
 
 
 

Specify FFNN model with many (relative) inputs  
and 1 neuron  in the hidden layer  as 

preliminary step for determining the optimal  
number of hidden nodes. 

 
 

 
Does the additional 1 node in  

the hidden layer yield the significance 
of R

2
incremental ? 

 
 
 
 

Specify FFNN model with FIXED number of  
hidden nodes as result of the previous step, 
start with lag inputs that has the largest R

2
. 

 

 
 
 

Does the additional 1 lag  
Input yield the significance of   

R
2
incremental ? 

 

 
 

END 

 

 
Figure 2.  The first proposed procedure of FFNN model building for time series forecasting. 

YES 

NO 

NO 

Apply ARIMA 
model. 

NO 

Add 1 node in   
the hidden layer.  

YES 

Add 1 additional 
lag input. 

YES 
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START 

 
 
 

Apply nonlinearity test for detecting  

nonlinear relationship in time series. 

 
 
 

Does nonlinearity test 
show that there is a nonlinear 

relationship? 

 
 
 
 

Specify FFNN model with many (relative) inputs  
and 1 neuron  in the hidden layer  as 

preliminary step for determining the optimal  
number of hidden nodes. 

 
 
 

Does the additional 1 node in  
the hidden layer yield the significance 

of R
2
incremental ? 

 
 
 
 

Specify FFNN model with FIXED number of  
hidden nodes as result of the previous step, 
use many (relative) lag inputs in the FFNN. 

 

 
 
 

 
By using Wald test,  

are there the not significance lag  
inputs? 

 

 
 

END 

 

 
Figure 3.  The second proposed procedure of FFNN model building for time series forecasting. 

 

 

 
 

YES 

NO 

NO 

Apply ARIMA 
model. 

NO 

Add 1 node in   
the hidden layer.  

YES 

Eliminate the not 
significance lag. 

YES 
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   Figure 4.  Time series and lags (yt-1 and yt-2) plots of simulated data. 

 

 
   Table 1. The results of the optimal hidden nodes determination in the first procedure based 

on     the forward scheme by implementing inference of R
2
incremental. 

. 

Number of 

hidden 

nodes 

SBC R
2 

R
2

INCREMENTAL F test p-value 

 

0 

 

234.4843 

 

 

0.161569 

 

 

- 

 

 

  - 

 

 

- 

1 

 

182.0737 

 

0.547258 0.385689 

 

28.5667 

 

0.00000 

2 

 

-72.8918 0.975535 0.428277 7.7719 0.00000 

3 

 

-61.4821 

 

0.981029 

 

0.005494 

 

0.0518 

 

0.99993 

 

4 

 

-45.5007 

 

0.984601 

 

0.003572 

 

0.0300 

 

0.99999 

 

5 

 

-33.6011 

 

0.987999 

 

0.003398 

 

0.0251 

 

1.00000 

6 

 

2.70047 0.988065 

 

0.000066 0.0004 1.00000 
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   Table 2. The results of the optimal input units determination by in the first procedure                   

based on  the forward scheme by implementing inference of R
2
incremental. 

 

Input lags SBC R
2 

R
2

incremental F test p-value 

 

1 

2 

3 

4 

5 

6 

 

-137.764 

235.233 

272.478 

284.580 

285.902 

278.594 

 

0.972463 

0.383648 

0.159330 

0.070129 

0.059832 

0.115375 

 

- 

- 

- 

- 

- 

- 

 

 

- 

- 

- 

- 

- 

- 

 

 

- 

- 

- 

- 

- 

- 

 

1 – 2 

1 – 3 

1 – 4 

1 – 5 

1 – 6 

 

130.9003 

129.0907 

129.1086 

128.5544 

130.3262 

0.973078 

0.972669 

0.972673 

0.972547 

0.972949 

0.000615 

0.000206 

0.000210 

0.000083 

0.000485 

 

1.23954 

0.41539 

0.42346 

0.16829 

0.97934 

0.29349 

0.66109 

0.65583 

0.84531 

0.37877 

 

Table 3. The results of the optimal input units determination in the second procedure                  

based on backward scheme by implementing Wald test. 
 

Weights COEFFICIENT S.E. WALD TEST
 

P-VALUE 

 
b ->h1 

1->h1 

2->h1 

3->h1 

4->h1 

5->h1 

6->h1 

b->h2 

1->h2 

2->h2 

3->h2 

4->h2 

5->h2 

6->h2 

b->o 

h1->o 

h2->o 

 
-0.0122 

 0.9630 

-0.0165 

-0.0016 

-0.0060 

-0.0009 

 0.0020 

-0.0005 

 1.3477 

-0.0175 

-0.0038 

-0.0048 

-0.0006 

-0.0008 

 0.3878 

-77.4291 

 76.5030 

 
0.0352 

0.0556 

0.0108 

0.0068 

0.0068 

0.0071 

0.0069 

0.0369 

0.0746 

0.0116 

0.0081 

0.0080 

0.0080 

0.0078 

0.1474 

23.8600 

23.9097 
 

 
0.1203 

300.0898 

2.3532 

0.0555 

0.7712 

0.0162 

 0.0846 

0.0002 

326.0336 

2.2753 

0.2198 

0.3584 

0.0057 

0.0104 

6.9216 

10.5307 

 10.2381 

 
0.728733 

0.000000 

0.125021 

0.813763 

0.379829 

0.898732 

0.771153 

0.989196 

0.000000 

0.131440 

0.639206 

0.549406 

0.939963 

0.918691 

0.008515 

0.001174 

0.001376 

 
 

    

The comparison result on the number of 

running steps shows that the second procedure 

based on the combination between inference of 

R
2
incremental in forward scheme and Wald test in 

backward scheme yields the least running 

steps.  The results in Table 1 and 3 show that 

the second proposed procedure need 4 running 

steps, i.e. 3 running for determining the optimal 

hidden nodes and 1 running for input layer 

cells.   

 

The results of the second procedure  

As stated in the previous section, these two 

new procedure start with the same approach, 

i.e. forward scheme by implementing inference 

of R2incremental for determining the optimal 

number of hidden nodes. Hence, the optimal 
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number of hidden nodes in this second 

procedure is exactly the same with the result of 

the first procedure, i.e. two hidden nodes as 

presented at Table 1.   

 Then, an optimization at the second 

procedure continue to find the optimal input 

units. It is done in backward scheme by using 

Wald test. The results of the significance Wald 

test for FFNN estimator are presented in Table 

3. It shows that only input unit 1, i.e. 1ty  , is 

the input cell of the network which has 

significance estimator, both to hidden node 1 

and 2 (h1, h2). Hence, this backward procedure 

yields the optimal network is FFNN with one 

input unit  (i.e. 1ty  ) and two nodes in the 

hidden layer or FFNN(1,2).  

 

CONCLUSION 

 

Based on the results at the previous sections, 

we can make two main conclusions, i.e. 

i. Two new proposed procedures for FFNN 

model selection based on the inference of 

R2incremental and Wald test work properly for 

determining the best FFNN architecture.  

ii. The second proposed procedure based on 

the combination between inference of 

R2incremental in forward scheme and Wald 

test in backward scheme yields the least 

running steps. 

 In general, the results also show that the 

proposed procedures give an advantage for 

FFNN modeling, i.e. the building process of 

FFNN model is not a black box. Additionally, 

we can do further research particularly on the 

application of this proposed procedure in the 

real time series data.  
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