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ABSTRACT

Let Gt(n) be the class of connected graphs on n vertices having the longest cycle of length t and let G ∈ Gt(n). 
Woodall (1976) determined the maximum number of edges of G. An alternative proof and characterization of 
the extremal (edge-maximal) graphs given by Caccetta & Vijayan (1991). The edge-maximal graphs have the 
property that their complements are either disconnected or have a cycle going through each vertex (i.e. they are 
hamiltonian). This motivates us to investigate connected graphs with prescribed circumference (length of the 
longest cycle) having connected complements with cycles . More specifically, we focus our investigations on 
the class G (n, c, c ) denoting the class of connected graphs on n vertices having circumference c and whose 
connected complements have circumference c .  The problem of interest is that of determining the bounds of 
the number of edges of a graph G∈ G(n, c, c ) and characterize the extremal graphs of G(n, c, c ).
We  discuss the  class  G (n,  c,  c )  and present  some  results  for  small  c.   In  particular  for  
c = 4 and c  = n - 2, we provide a complete solution.
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INTRODUCTION

The  properties  of  the  graphs  usually  involve 
certain graph parameters. A great deal of graph 
theory is concerned with establishing the best 
bounds for graph parameters and characterizing 
the graphs for which the bounds are achieved. 
This  important  area  of  graph  theory,  called 
extremal graph theory, forms the main focus of 
this  paper.  The  property  we  consider  is 
expressed in terms of the length of the largest 
cycle in the graph and the length of the largest 
cycle in the graphs complement. In particular, 
we  focus  our  attention  on  the  problem  of 
determining the bounds of the number of edges 

of graph G if given c(G) and c( G ).

We use standard set  theoretic notation and 
terminology. As there is considerable variation 
in the graph theoretic notation and terminology 
used  in  the  literature,  we  present,  in  this 
section, the basic notation and terminology that 
we use  in  this  paper.  For  the  most  part,  our 
notation and terminology follows that of Bondy 
& Murty (1976). We denote the vertex set of a 
graph  G by  V(G)  and  the  edge  set  of  G by 
E(G); the cardinalities of these sets are denoted 
by  ν (G) and  ε (G), respectively. We use the 
standart  notation denoting the complete graph 

on  n vertices by  Kn and the complete bipartite 
graph with bipartitioning sets of order m and n 
by  Km,n.  The path and cycle on  n vertices are 
denoted  by  Pn and  Cn,  respectively.  The  join 
between two graphs  G and  H, denoted by  G ∨ 
H, is the graph obtained from G ∪ H by joining 
every vertex of G to every vertex of H.

Let  Gt(n) be  the class of connected graphs 
on n vertices having the longest cycle of length 
t and let G ∈ Gt(n). Woodall (1976) determined 
the  maximum  number  of  edges  of  G.  An 
alternative  proof  and  characterization  of  the 
extremal  (edge-maximal)  graphs  given  by 
Caccetta & Vijayan (1991). 

The  following  three  lemmas  formed  an 
important  component  of  the  method of  proof 
given by Caccetta & Vijayan (1991). 
Lemma 1.1
Let  G ∈ Gt(n) and let  x ∈ H be joined to the 
vertices  i1,  i2,  …,  ik of  C.  Then,  for  
1 ≤  α  ≠  β  ≤  k, we have :
(a) iα  - iβ  ≥  2;
(b) (iα  -  1,   iβ  -1),  (iα  + 1,   iβ  +1)  ∉ E(G). 
�
This lemma tells us that any vertex of G – V(C) 
cannot be joined to two consecutives  vertices 
of  a cycle C in G. 
Lemma 1.2
Let G ∈ Gt(n) and let P = i, x1, x2, …, xd-1, j be 
an (i, j)-path,  i ≠  j, of length d whose internal 
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vertices are not in C. Then (a) d ≤  i - j≤ t – 
d, so t ≥  2d,
(b) for positive integers a, b with a + b ≤  d : (i  
+ a, j + b), (i - a, j - b) ∉ E(G).          
�
Instead of a single vertex of  G –  V(C),  this 
lemma  considers  a  path  of  length  d whose 
internal  vertices  are  not  in  C.  So,  this  result 
generalizes Lemma 1.1.
Lemma 1.3 
Let G ∈ Gt(n) and let P = i, x1, x2, …, xd-1, j be 
an  (i,  j)-path,  i  ≠  j,  of  length  d ≥  2  whose 
internal  vertices  are  not  in  C.  Suppose  x1 is 
joined  to  k vertices  of  C.  
Let A = G[V(C)]. Then
ε (A) ≤  ½ t(t – 1) - ½ (k + d – 2)(k + d – 3),
with equality holding only if d = 2 and t = 2k.

                               �
We often make use of the above three lemmas 
since our focus in this paper is to determine the 
maximum  number  of  edges  of  a  graph  G 
having  certain  properties.  Our  properties 
specify  that  G and  its  complement  have  a 
longest cycle of specified length and both must 
be connected.
The following lemma was given by Xu (1987).
Lemma 1.4 
Let  G be a graph of order  n ≥  6, and both  G 

and G  have cycles, then

n + 2 ≤  c(G) + c( G ) ≤  2n

and 

3(n – 1) ≤  c(G) . c( G ) ≤  n2  

�
The following lemma is due to Kusmayadi and 
Caccetta (2001).
Lemma 1.5 
Let G ∈ G2k (n), k ≥  2, be a k-connected graph. 

Then G is not connected.                             �
We now consider the class  G (n, 4,  n – 2) of 
connected  graphs  having  a  cycle  of  length  4 
and a connected  complement  with a  cycle  of 
length n – 2. Let G ∈G(n, 4, n – 2). Kusmayadi 
and  Caccetta  (2001)  found  the  bounds  of 
ε (G) as stated in the following theorem.
Theorem 1.6 
Let G ∈G (n, 4, n – 2), n ≥  9. Then ε (G) = 2n 
– 4 or 2n – 5.
Moreover, these bounds are sharp.

METHODS

The  methods  used  to  do  this  research  are  a 
literature  study.  In  particular,  it  is  used  the 
knowledge owned by the authors from the previous 
research  experiences.  The  strategy  used  in  this 
research  is  divided  into  some  steps  as  the 
following. Let G ∈ G(n, 4, n – 2).

The first step is investigating the diameter of G, 
d(G), by considering the properties of a graph G in 
the class of  G(n,  4, n –  2). The second step is to 
investigate  the  minimum degree of  G,  δ (G),  by 
considering the properties of a graph G in the class 
of   
G(n,  4,  n –  2).  The next step is determining the 

number  of  edges  of  A  =  G [C],  where  C is  a 

cycle  of  length  n  –  2.  The  final  step  is 
characterising the graph  G ∈ G(n, 4, n– 2).

RESULTS AND DISCUSSION

The  main  goal  of  this  section  is  giving  the 
characterization  of  the  extremal  graphs  of  
G(n,  4,  n – 2). Let  G ∈ G(n,  4,  n – 2). The 
following  few  results  deal  with  the  diameter 
d(G) of G ∈ G(n, 4, n – 2).  

The diameter d(G) of  G ∈  G(n,4, n-2)
Lemma 3.1
Let G ∈ G(n, 4, n – 2), n ≥  11. Then d(G) ≥  3.
Proof :
Let G ∈ G(n, 4, n – 2). Then , by Lemma 1.5, 
G  has  a  cut  vertex,  v  say.  Suppose  that  
d(G) ≤  2. Then every vertex of G is adjacent to 
v and hence dG(v) = n – 1. But then G cannot 

be connected. Hence d(G) ≥  3.                �
Lemma 3.2
Let G ∈ G(n, 4, n – 2), n ≥  11. Then d(G) ≤  3.
Proof :
Suppose  that  d(G)  ≥  4  and  let  G  be  the 
smallest  graph  on  n vertices  satisfying  the 
hypothesis  in  the lemma.  We will  prove  that 
δ (G) ≥  2.
Suppose δ (G) = 1 and let dG(x) = 1. Consider 
G  –  x.  Clearly,  G  –  x is  connected,  
c(G – x) = c(G) = 4, ε (G – x) = ε (G) – 1 and 

d(G – x) ≤  d(G). By Lemma 1.4, in G - x , we 

have :

c(G- x) + c( G - x ) ≥  (n – 1) + 2  = n + 1.

Therefore

c( G - x )  ≥  (n + 1) –  c(G – x) =  n – 3 (since 

c(G – x) = 4).
By the choice of G, we know that

c( G - x ) ≠  (n – 1) – 2.
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Since c( G - x ) ≤  c( G ) = n – 2 and c( G - x ) ≠  
n - 3, then the only possibility is that 

c( G - x ) = n – 2.

But then we have c( G ) > n – 2 (since dG(x) = 

1),  a  contradiction.   So  we  must  have  
δ (G) ≥  2. 
From theorem 1.6, we know that ε (G) = 2n – 

4 or 2n – 5. So, the average degree d  of G is

d  = 2ε (G)/n ≤  (4n – 8)/n < 4.

This implies that δ (G) ≤  3 and hence δ (G) = 
2 or 3.
Suppose  dG(x)  =  δ .  Consider  G  –  x. 
Obviously, c(G – x) ≤  c(G). We will show that 

c(G – x) = c(G).
In G – x, we have
ε (G - x) = ε (G) -  δ  ≥  2n – 5 - δ  = 3(n – 
2)/2 + n/2 – 2 - δ  ≥  3(n – 2)/2 + (n – 10)/2 > 
3(n – 2)/2.
Therefore, c(G – x) ≥  4 and so c(G – x) = c(G) 
= 4, as required.

We claim that  c( G - x )  ≠  c( G ) – 1. Suppose 

c( G - x )  =  c( G )  –  1.  Then  

c( G - x ) = (n – 2) – 1 = n – 3. Since dG(x) = δ  

≤  3, then . n- (x) d
G

4≥  Consider G . 

The  situation  is  as  depicted  in  the  following 
Figure 1.

Figure 1 . G

We  consider  four  cases  according  to  the 
values  of   e(x,  Cn-3),  the  number  of  edges 
coming from the cycle Cn-3 to vertex x.
Case 1 : e(x, Cn-3) = n – 3.

Since  the  maximum degree  of  x in  G  is  at 

most n – 3, then x cannot be joined to vertices 

u and v of G . In addition, vertices u and v are 

joined  to  at  most  one  vertex  of  Cn-3,  as 

otherwise c( G ) > n – 2. Therefore

ε ( G ) ≤  ½ (n – 3)(n – 4) + (n – 3) + 3 ≤  ½ (n2 

– 5n + 12),

with equality achieved when G  is as shown in 

Figure 2.

Figure 2 . G

But then G is disconnected. Therefore

ε ( G ) ≤  ½ (n2 – 5n + 10).

Now, we claim that there exists vertices ci and 

cj of V(Cn-3) such that cicj ∉ E( G ).

Suppose not. Then G [V(Cn-3) ∪ {x}] ≅  Kn-2 

and hence d(G) < 4, a contradiction. Therefore, 
there exists ci and cj in  V(Cn-3) such that  cicj ∉ 
E( G ). 

Suppose ci, cj ∈ (u)N
n-C 3

. Then, in G , we 

have  a  cycle  C :  x,  cj+1,  cj+2,  …,  ci,  u,  cj,  
cj-1, …,  ci+1,  x of length n – 1, a contradiction. 
This implies that  u and v are each joined to at 
most one of ci and cj.

Now, suppose  ci ∈ )(
3

uN
n-C ∩ )(

3
vN

n-C . It 
is  easy  to  check  that,  in  G,  we  have  
d(G) = 2, a contradiction. So, without no loss 
of  generality,  we  can  assume  that  

vci ∉ E( G ) and ucj ∉ E( G ). But then, in G, we 

have a cycle C : u, ck, v, ci, cj, u of length 5, a 
contradiction.
Case 2 : e(x, Cn-3) = n – 4.

Then  4 3
G

d (x)  n -  or n - = .  We  consider  these 

two possibilities separately.

Suppose that 4)(  n-  xd
G

= . Then x cannot be 

joined to vertices u and v of G . In addition, u 

and v can only be joined to at most one vertex 
of  Cn-3.  The  reason  for  this  is  as  follows  : 
Suppose, without no loss of generality, uci and 

ucj ∈ E( G ). Then, in G , we have a cycle C: x, 

cj+1, cj+2, …, ci, u, cj, cj-1, …, ci+1, x of length n – 
1,  
a contradiction. Hence,
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ε ( G ) ≤  ½ (n – 3)(n – 4) + (n – 4) + 3 ≤  ½ 

(n2 – 5n + 10),

with equality achieved when G  is as shown in 

Figure 3.

Figure 3. G

But  then  G is  disconnected  or  d(G)  =  2,  a 
contradiction.
Therefore,

ε ( G ) ≤  ½ (n2 – 5n + 8).

Again,  we claim that there exists  ci and  cj of 

V(Cn-3) such that cicj ∉ E( G ). Suppose not. Let 

e = xcr, where cr ∈ V(Cn-3). Then G [V(Cn-3) ∪ 
{x}]  ≅  Kn-2\e and  hence  
d(G)  <  4,  a  contradiction.  Therefore,  there 
exists  ci,  cj ∈ V(Cn-3)  such  that  

cicj ∉ E( G ). 

Suppose ci, cj ∈ )(
3

uN
n-C . Then, in G , we 

have  a  cycle  C :  x,  cj+1,  cj+2,  …,  ci,  u,  cj,  
cj-1, …,  ci+1,  x of length n – 1, a contradiction. 
This implies that  u and v are each joined to at 
most one of ci and cj.

Now, suppose  ci  ∈ )(
3

uN
n-C ∩ )(

3
vN

n-C .  It  is 
easy  to  check  that,  in  G,  we  have  
d(G) = 2 or there is a cycle C : x, cr, u, cj, v, x 
(note that cr could be the same as ci) of length 
5,  a  contradiction.  So,  with  no  loss  of 
generality,  we  can  assume  that  

vci ∉ E( G ) and ucj ∉ E( G ). But then, in G, we 

have a cycle C : u, ck, v, ci, cj, u of length 5, a 
contradiction.

Suppose  now  that  3)(  n-  xd
G

= .  Then, 

without loss of generality, we may assume that 

ux ∈ E( G ). Clearly, u cannot be joined to any 

vertices of Cn-3 and vertex v can only be joined 
to  at  most  one  vertex  of   Cn-3,  as  otherwise, 
suppose  vci and  

vcj ∈ E( G ). Then, in G , we have a cycle C : x, 

cj+1,  cj+2,  …,  ci,  u,  cj,  
cj-1, …, ci+1, x of length n – 1, a contradiction. 

But then, in G, we can find a cycle C : u, c1,v, 
x,  c2,  u (c1,  c2 ∈ V(Cn-3))  of  length  5,  a 
contradiction.

Case 3 : e(x, Cn-3) = n – 5.

If 3)(  n-  xd
G

= , then x must also be joined to 

u and  v.  Clearly,  u and  v cannot be joined to 

any vertex of Cn-3, as otherwise c( G )  > n – 2. 

But  then,  in  G,  we  have  a
cycle C : u, c1,v, c2, x, c3, u (ci ∈ V(Cn-3), i = 1, 
2) of length 6, a contradiction.

If  4)(  n-  xd
G

= ,  then,  without  loss  of 

generality,  we may assume that  ux ∈ E( G ). 

Clearly,  u cannot be joined to any vertices of 
Cn-3 and vertex v can only be joined to at most 

one vertex of  Cn-3, as otherwise c( G ) > n – 2. 

Again,  in  G,  we  have  a  cycle  
C : u, c1,v, c2, x, c3, u (ci ∈ V(Cn-3), i = 1, 2, 3) 
of length 6, a contradiction.
Case 4 : e(x, Cn-3) = n – 6.

Clearly  4)(  n-  xd
G

=  and hence  x must also 

be joined to u and v. In addition, u and v cannot 
be joined to any vertex of Cn-3, as otherwise c(

G ) > n – 2. But then, in G, we have a cycle C : 

u, c1,v, c2, x, c3, u (ci ∈ V(Cn-3)) of length 6, a 
contradiction. 

Therefore,  c( G - x ) =  c( G ) or  c( G - x )  ≤  c(

G ) – 2.

If  c( G - x ) =  n – 2 and since  4)(  n-  xd
G

≥ , 

then c( G ) > n – 2, a contradiction.

Now, if c( G - x ) ≤  (n – 2) – 2 = (n – 1) - 3 and 

since d G (x) = n – 3 or n – 4, then clearly that 

c( G )  < n – 2, a contradiction. This completes 

the proof of the lemma.                               €
Lemmas 3.1 and 3.2 together give :
Theorem 3.3
Let G ∈ G(n, 4, n – 2), n ≥  11. Then d(G) = 3. 

               €

The minimum degree  δ (G) of  G∈G(n,4,n–
2)

The following result  deals with the minimum 
degree  δ (G)  of  a  graph  
G ∈ G(n, 4, n – 2). 

Lemma 3.4
Let G ∈ G(n, 4, n – 2), n ≥  11. Then δ (G) = 
1.
Proof :

u
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Let G be the smallest graph on  n ≥  11 vertices 
satisfying  the  hypothesis  in  the  lemma.  By 

Theorem 1.6, the average degree d  of G is

d  = 2ε (G)/n ≤  (4n – 8)/n < 4,

and so 1 ≤  δ (G) ≤  3.
Suppose δ (G) ≥  2 and dG(x) = δ . Consider G 
– x. Clearly, c(G- x) ≤  c(G) = 4.

By Lemma 1.4 we have  c(G- x) +  c( G - x )  ≥  
(n – 1) + 2  = n + 1,
and hence

c( G - x )  ≥  (n + 1) –  c(G –  x) = (n + 1) – 4 

(Since c(G- x) ≤  4)                       = n - 3.

Obviously, c( G - x ) ≤  c( G ) = n – 2.

By the choice of  G, we know that  c( G - x )  ≠  
(n – 1) – 2.

So  the  only  possibility  is  c( G - x )  =  n –  2. 

Since  dG(x)  =  2  or  3  then  we  have  
c(G) >  n – 2, a contradiction. This completes 
the proof of the lemma.  
�

The number of edges ε ( A ) where A  = G  

[C]
Let G ∈ G(n, 4, n – 2) and  let C be a cycle of 

length  n –  2  =  c( G )  in  the  connected 

complement G .  Suppose   A  =  G [C].  The 

following lemma gives the lower bound of the 
number of edges of A .
Lemma 3.5
Let G ∈ G(n, 4, n – 2) and  let C be a cycle of 

length  n –  2  =  c( G )  in  the  connected 

complement G .  Suppose   A  =  G  [V(C)]. 

Then ε ( A ) ≥  




 −
2

2n
 - 1 .

Proof :
Let G ∈ G(n, 4, n – 2) and let C = {x1, x2, …, 

xn-2} be a cycle of length n – 2 in G . Let H  = 

G  -  V(C)  =  {u1,  u2}  and  A  =  G  [V(C)]. 

Consider  G .  We,  first,  show  that  

Gd (u) ≤  2 for any u ∈ V( H ). Suppose Gd (u) 

≥  3 for some u ∈ V( H ).  Then, at least one of 

the vertices  of  H must be joined  to at  least 
two  vertices  of  C.  Suppose  u1 xi   and  

u1 xj ∈ E( G ). 

By Lemma 1.1, we geti - j ≥  2 and xi+1 xj+1 ∉ 
E( G ).

Now, suppose }{)(
211 kiiiG ,..., x, xxuN = .

By  Lemmas  1.1  and  1.2,  we  get

1 1
1 .

m
i i

x  x E(G),    m k+ + ϣ��
l

l  

This implies that, in  G, we can find a path  Pk 

and vertex  u1 is joined to every vertex of this 
path Pk. If  k ≥  4, we can get a cycle of length 
at least 5 in G, a contradiction.

Therefore, N G (u1) ∩ C ≤  3.

If N G (u1) ∩ C = 2 and d G (u2) ≤  2, then by 
Lemmas  1.1  and  1.2,  we  can  find,  in  G,  an 
edge e and vertex xk such that e is incident to  u1 

and  u2 and both  u1 and  u2 are joined to vertex 
xk.  Consequently, there exists a cycle u1 xi+1 xj+1 

u2 xk u1 of length 5 in G, a contradiction.

Now, suppose N G (u1) ∩ C = 3 and d G (u2) 

≤  2. Again,  by Lemmas 1.1 and 1.2, we can 
find a path P3 in G such that vertex u1 is joined 
to every vertex of P3 and vertex u2 is joined to 
at  least  two  vertices  of  P3.  Hence,  we  get  a 
cycle of length 5 in G, a contradiction.
So, the only possibility is d G (u1) = d G (u2) = 
3. Without any loss of generality, the situation 
can be depicted as shown in Figure 4.

Figure 4. G

If  u1u2 ∉ E( H ),  then clearly   GN (u1)  ∩

GN (u2)  ≤  3. Hence, we can find a path P3 in 
G such  that  vertices  u1 and  u2 are  joined  to 
every vertex of this path P3. Therefore, we get 
a  cycle  of  length  at  least  5  in  G,  a 
contradiction.

Now,  if  u1u2 ∈ E( H ),  then  N G (u1)  ∩

GN (u2) ≤ 2. If  GN (u1) ∩ GN (u2) = 0, then, 
in G, we can find two K2’s such that vertices u1 

and u2 are joined to every vertex of these K2’s. 
Hence, we get a cycle of length at least 5 in G, 
a contradiction.

If   GN (u1)  ∩ GN (u2)  ≥ 1, then we can find 
K2 and a vertex xk in G such that u1 and u2 are 
joined  to  xk and  every  vertex  of  K2.  This 
implies that  G has a cycle of length 5 :  u1 xi+1 
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xj+1 u2 xk u1, a contradiction. Therefore, we have 

Gd (u)  ≤  2  for  any  vertex  

u ∈ V( H ).

If vertices u1 and u2 of H  are joined to the 
same vertex of C, then by Lemma 3.4, we have 

∆ ( G ) = n – 2, and hence

ε ( A ) = 
2

2

n −� �
� �
� �

 - 1.      (1)

If vertices  u1 and  u2 of  H  are  joined to the 
different  vertex  of  C,  then again,  by Lemma 

3.4, we have ∆ (G ) = n – 2, and then

ε ( A ) = 
2

2

n −� �
� �
� �

.          (2)

From (1) and (2) we get ε ( A ) ≥  
2

2

n −� �
� �
� �

 - 1, 

as required.  
�
Remark 3.1

Let  G ∈ G(n,  4,  n  –  2)  and  let  G  be  the 

connected  complement  of  G.  Then  

d( G ) = 3 . This follows from  Theorem 3.3 and 

Lemma 3.5.

The characterisation of G ∈  G(n, 4, n– 2)
We are now  ready to characterize the extremal 
graphs  of  G(n,  4,  n  –  2) as  stated  in  the 
following theorem.
Theorem 3.6
 Let G ∈ G(n, 4, n – 2). Then G ≅  Gi  , i = 1, 2, 

3,  4, 
where ε (  Gi)  = 

2 5 1 2 3

2 4 4

n , i , , 

n , i       

− =

− =
￬
￬
￬

Figure 5. The extremal graphs of G ∈ G(n,4,n–
2)

Proof :

Let  G ∈ G(n,  4,  n  –  2)  and  let  G  be  the 

connected complement of  G having a cycle  C 

of length n – 2 = c( G ) in G . Let  C = {x1,  x2, 

…,  xn-2},  A  =  G [V(C)]  and  

H  = G  - V(C) = {u1, u2}. 

By Lemma 3.5, ε ( A ) ≥  
2

2

n −� �
� �
� �

 - 1.

So, we have two cases to consider concerning 
the number of edges in A .

Case 1 : ε ( A ) = 
2

2

n −� �
� �
� �

.

Then  A  ≅  Kn-2. Therefore,  any vertex of  H  

can be joined to at most one vertex of  A , as 

otherwise c( G ) > n – 2.

If u1u2 ∈ E( G ), then without loss of generality, 

we  can  take  u1xi ∈ E( G )  and  

u2xj ∉ E( G ), 1 ≤  j ≤  n – 2. So, we get G ≅  G2. 

If  u1u2  ∉ E( G ),  then  u1xi and  

u2xj ∈ E( G ), i ≠  j. Hence, we get G ≅  G1.

Case 2 : ε ( A ) = 
2

2

n −� �
� �
� �

 - 1.

Then, A  ≅  Kn-2\e. Suppose e = xxm, with x 

and xm ∈ V( A ). By Remark 3.1, we get  d( G ) 

= 3 and hence any vertex of H must be joined 
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to the same vertex x or xm , as otherwise c( G ) 

> n – 2 or d( G ) > 3.

If u1u2 ∈ E( H ), then without loss of generality, 

we  can  take  u1x ∈ E( G )  and  

u2x ∉ E( G ), and so we get G ≅  G3.

If  u1u2  ∉ E( H ),  again,  without  loss  of 

generality, we can take  u1x and  u2x ∈ E( G ) 

and hence we get  G ≅  G4. This completes the 
proof of the theorem.

CONCLUSION AND SUGGESTION 

The characterisation of the extremal graphs of 
G ∈ G(n, 4, n – 2) is as stated in the Theorem 
3.6. We suggest the readers to investigate more 
general  problem  for  
G  ∈ G(n,  c,  c )  and  characterise  the  related 
extremal graphs.

REFERENCES

Bondy JA & Murty USR. 1991. Graph Theory  with 
Applications. The  MacMillan  Press.  London, 
1976.

Caccetta L & Vijayan K. Maximal Cycles in Graphs, 
Discrete Mathematics. 98:1-7.

Kusmayadi TA & Caccetta L. 2001.  Edge-Maximal 
Graphs  with  Prescribed  Circumference. 
presented in The 26th Australian Conference on 
Combinatorial  Mathematics  and  Combinatorial 
Computing,  Curtin  University  of  Technology, 
Perth, Western Australia. 9 -13 July, 2001.

Woodall DR. 1976.  Maximal Circuits of Graphs I. 
Acta  Mathematica.  Academiae  Scientiarum 
Hungaricae. 28:77-80.

Xu  SJ.  1987.  Some  Parameters  of  Graph  and  Its 
Complement.  Discrete  Mathematics. 65:197-
207.


	36                                                                               On The Graphs (TA Kusmayadi & L Caccetta)
	On The Graphs and Their Complements with Prescribed Circumference
	INTRODUCTION
	RESULTS AND DISCUSSION
	Figure 1 . 
	Figure 2 . 


	The minimum degree (G) of GG(n,4,n–2)
	The following result deals with the minimum degree (G) of a graph 
G  G(n, 4, n – 2). 
	Now, suppose.
	By Lemmas 1.1 and 1.2, we get 
	Figure 4. 

	 Let G  G(n, 4, n – 2). Then G  Gi  , i = 1, 2, 3,  4, 
	Figure 5. The extremal graphs of G  G(n,4,n–2)
	If u1u2  E(), again, without loss of generality, we can take u1x and u2x  E() and hence we get G  G4. This completes the proof of the theorem.
	Conclusion and Suggestion 
	REFERENCES


