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ABSTRACT 
 
This study aims to classify crops on fragmented agricultural land by 

integrating radar (Sentinel-1) and optical (Sentinel-2) satellite remote sensing 

data. The research responds to the pressing issue of decreasing agricultural 

land in Jember Regency due to land conversion, which threatens food 

security. Feature-level fusion is applied to combine spectral indices (NDVI, 

NDWI, NDBI) from Sentinel-2 and radar backscatter characteristics (VV, VH) 

from Sentinel-1. Classification was performed using the Random Forest 

algorithm in the Google Earth Engine (GEE) platform. The results showed 

that the combination of both datasets provided high overall accuracy 

(81.58%) in classifying eight land cover types including agricultural crops 

such as paddy, corn, sugarcane, and citrus. This integration enables better 

monitoring of complex agricultural landscapes, offering a practical tool for 

sustainable land management. 

 

INTRODUCTION 

The agricultural sector in Jember Regency is experiencing increasing pressure due to land 
conversion, driven by the growth of residential, industrial, and service areas (Rondhi et. al., 2018). 
Between 2005 and 2013, data show that rice fields decreased by an average of 81.86 hectares annually, 
with a land-use conversion rate reaching 31.92% over that period. This transformation significantly 
threatens local food security, particularly because in 2015, Jember was once a leading rice producer in 
East Java, with more than one million tons harvested (Sunartomo, 2015). However, since then, 
production has consistently declined. 

One of the major consequences of land conversion is the fragmentation of agricultural land, 
which refers to the division of continuous farmland into smaller, isolated parcels (Ansari, 2020). 
Fragmentation negatively impacts planting patterns, reduces agricultural productivity, and creates 
difficulties in monitoring and managing agricultural systems. Given the complexity of fragmented land 
and the high heterogeneity of crops, conventional field-based surveys are no longer sufficient to support 
sustainable agriculture planning (Pramesthy et. al., 2023). 

In response, remote sensing technology has become a vital tool for crop monitoring and land 
use classification (Soedarto & Ainiyah, 2022). Remote sensing technology has proven effective in land 
cover classification, especially in agricultural monitoring (Wang et. al., 2023). Optical satellite imagery, 
such as from Sentinel-2 which provides high spatial and spectral resolution data, captures detailed 
spectral information of vegetation, enabling the calculation of vegetation indices like NDVI, NDBI, and 
NDWI for crop mapping (Sklenicka, 2016). However, optical data are often limited by cloud cover, 
especially in tropical regions like Indonesia. To overcome this limitation, Synthetic Aperture Radar 
(SAR) data from Sentinel-1 offer all-weather, day-and-night imaging capabilities (Filipponi, 2019). SAR  
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data captures structural and moisture-related characteristics of the land surface (Sonobe et. al., 2017). 
SAR data also inform surface texture and structural information through backscatter intensity, providing 
valuable features for distinguishing different land cover types, including agricultural crops (Carlier, 
2000). 

Several studies have reported improvements in classification accuracy when combining optical 
and radar data (Defourny et. al., 2019). For example, the integration of Sentinel-1 and Sentinel-2 using 
machine learning classifiers such as Random Forest and Support Vector Machine has achieved 
accuracies of over 80% in land cover mapping. Yet, most of these studies do not address the specific 
challenges posed by fragmented agricultural lands, where spatial complexity and mixed cropping 
systems are common. 

Studies by Dagne et. al. (2023) demonstrated that combining Sentinel-1 and Sentinel-2 data 
significantly increases classification accuracy. Using Support Vector Machine (SVM) and Random 
Forest (RF), they achieved overall accuracies of 91% and 81%, respectively, when fusing radar and 
optical datasets. Their findings validate the effectiveness of multi-source integration in land cover 
classification, particularly in heterogeneous landscapes. 

Moreover, Chen & Zhang (2023) employed a fusion framework using Landsat-7/8, Sentinel-2, 
and Sentinel-1 to monitor alfalfa fields. The study reported a significant reduction in RMSE for 

vegetation index estimations, confirming the reliability of integrating radar and optical data for 
precision agriculture. Similarly, Eramudadi & Rokhmana (2024) applied an object-based approach in 

Google Earth Engine using Sentinel-1 and Sentinel-2, obtaining high classification accuracy for urban 
settlement mapping. 

Despite these advancements, limited studies focus explicitly on fragmented agricultural land, 
where small-scale, irregular field boundaries and crop heterogeneity pose unique challenges to 
classification accuracy. Mayele et. al. (2024) emphasized that land fragmentation disrupts spatial 
consistency, making remote sensing analysis more complex. This study contributes by addressing the 
classification of fragmented agricultural lands in Jember Regency using radar-optical data fusion. The 
approach builds on previous works by introducing feature-level fusion techniques to better capture the 
spatial complexity and seasonal crop variation in highly fragmented areas., 

Thus, this study aims to explore the integration of Sentinel-1 and Sentinel-2 data for crop 
classification in fragmented agricultural regions in Jember Regency. Using feature-level fusion and the 
Random Forest algorithm within the Google Earth Engine (GEE) platform, the study seeks to generate 
a high-accuracy classification map that reflects the diversity and complexity of local land use. This 
research is expected to contribute to sustainable agricultural monitoring and land management in 
regions facing similar challenges. 

MATERIALS AND METHODS 

This study was conducted in Jember Regency, East Java, Indonesia. There are 2 types of utilized data 
that are satellite data and ground data. Using multi-temporal imagery from Sentinel-1 (radar) and 
Sentinel-2 (optical) satellites covering the period from 2021 to 2024. 

Prior to the classification stage, a data fusion process was carried out at the feature level. This 
fusion involved the integration of information derived from two distinct types of remote sensing 
imagery—optical imagery from Sentinel-2 and radar imagery from Sentinel-1. The rationale behind this 
approach lies in harnessing the complementary strengths of both data sources: the rich spectral 
information provided by optical imagery and the structural and moisture-related insights obtained from 
radar data. By combining these features, a more robust and comprehensive representation of land 
cover conditions was achieved, particularly in complex and heterogeneous agricultural landscapes. 

Following the data fusion process, ground truth data were overlaid onto the fused imagery to 
facilitate the classification and accuracy assessment stages. As illustrated in Figure 1, the spatial 
distribution of training and validation samples covers the entirety of the study area. Each land cover 
class was assigned a unique color to enhance visual distinction. This stratified sampling ensured 
adequate representation of all classes, thereby supporting a robust and unbiased classification process. 
The methodological framework included data pre-processing, feature extraction, image fusion, 
classification, and accuracy assessment. 
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Pre-processing: 

Sentinel-2 images were processed using cloud masking based on the QA60 band to eliminate cloudy 
pixels, ensuring high-quality composite imagery. Sentinel-1 imagery was corrected for speckle noise 

using the Lee filter to retain essential surface texture characteristics, which are critical in radar image 
analysis. 

Feature Extraction: 

Vegetation and land characteristics were quantified using spectral indices derived from Sentinel-2. 
There are three spectral indices applied in this study that are NDVI, NDWI, and NDBI. 

• NDVI (Normalized Difference Vegetation Index) for vegetation vigor 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (1) 

• NDWI (Normalized Difference Water Index) for surface moisture 

 𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
 (2) 

• NDBI (Normalized Difference Built-up Index) for urban area identification 

 𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
 (3) 

Where: 

NIR = Reflectance value of band 8 (NIR) 
Red = Reflectance value of band 4 (Red) 
Green = Reflectance value of band 3 (Green) 
SWIR = Reflectance value of band 11 (SWIR) 

From Sentinel-1, backscatter coefficients VV and VH were extracted along with the VH/VV ratio to 
represent surface structure and moisture content. These radar features complemented the spectral 
indices by providing texture and penetration-based information. 

Image Fusion: 

Feature-level fusion was applied by stacking all derived indices and radar features into a single dataset. 
This comprehensive layer combined both spectral and structural insights, enabling more accurate 

classification in fragmented and heterogeneous agricultural landscapes. 

Classification: 

A supervised classification was carried out using the Random Forest (RF) algorithm, implemented in 
the Google Earth Engine (GEE) platform. RF was chosen due to its robustness in handling high-

dimensional input features and its effectiveness in non-parametric classification tasks. A total of 122 
ground truth points were used for training, while 51 validation points, stratified across all land cover 

classes, were used to evaluate classification accuracy. 
Ground truth data were imported into GEE as a Feature Collection and labelled according to 

the eight land cover classes. The fused image stack—consisting of Sentinel-1 and Sentinel-2 derived 

features (NDVI, NDWI, NDBI, VV, VH, VH/VV)—was used as input. The dataset was then randomly 
split into training data (122 samples) and validation data (51 samples) using stratified sampling 

techniques to ensure representative distribution across all classes. 
A Random Forest classifier with 100 decision trees was initialized and trained using the 122 

ground truth points. The algorithm evaluated feature importance and built multiple decision trees 
through bootstrap sampling. Each pixel in the image was classified based on majority voting from the 

ensemble of trees. The trained model was applied to the entire image to produce the classified land 
cover map. 

 Accuracy Assessment: 

Confusion matrix analysis was used to assess the performance of the classification model. One key 

accuracy metric was calculated Overall Accuracy (OA). Accuracy assessment was conducted by 
comparing predicted labels with the 51 validation points and mathematically expressed in equation 4.  

 𝑂𝐴 = (
𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑒𝑙
) 𝑥100% (4) 
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Finally, a majority filter was optionally applied to reduce speckle noise and smoothen 
classification boundaries. This classification strategy allowed for efficient identification of land cover 

types by leveraging the complementary strengths of radar and optical remote sensing data. This 
classification strategy allowed for efficient identification of land cover types by leveraging the 

complementary strengths of radar and optical remote sensing data. 
Training Sample Collection: A total of 51 reference points were used to represent seven land 

cover classes: Built-up Land, Paddy Fields, Corn, Sugarcane, Citrus, Non-agricultural Vegetation, 
Shrubs, and Water Bodies. Each point was manually labelled based on known ground truth or verified 

image characteristics. 
Random Forest Classification: The Random Forest classifier in GEE was configured with a 

number of decision trees and applied bootstrap sampling. It evaluated input features (e.g., NDVI, 
VH/VV) to determine their importance. During training, an ensemble of decision trees was built, each 
trained on a subset of data. For each pixel, the RF model aggregated predictions from all trees (majority 

voting) to assign the class label. 
Classification Output: The trained RF model was applied to the entire study area to produce a 

classified land cover map. Each pixel was labelled into one of the seven predefined classes. Optional 
post-processing, such as mode filtering, was applied to reduce noise. The final classification map 

visually displayed land cover types and supported further spatial analysis. 

Size of Dataset 

The dataset comprised fused imagery over 2,855 hectares of agricultural and non-agricultural land. 
Ground truth data included 122 training points and 51 validation points, categorized into the following 

eight land cover classes: built-up land, paddy fields, corn, sugarcane, citrus, non-agricultural vegetation, 
shrubs, and water body. 

The spatial distribution of all ground truth samples is visualized in Google Earth Engine. Each 
land cover class was assigned a unique color, and the points were distributed proportionally across the 

study area to ensure adequate spatial coverage and representativeness. Training samples are denoted 
with solid color pins, while validation points are represented by lighter or outlined markers. This stratified 

sampling approach supports robust classification performance and accurate validation outcomes.The 
fused dataset covered approximately 2,855 hectares in Jember Regency and was categorized into the 
following eight land cover classes: 

Table 1. Land Cover Type 

Class Land Cover Type Training Point Validation Point 

1 Built-up Land 20 8 
2 Paddy Fields 11 5 
3 Corn 11 5 
4 Sugarcane 13 6 
5 Citrus 20 8 
6 Non agricultural Vegetation 25 10 
7 Shrubs 12 5 
8 Water Bodies 10 4 

 
Table 1 shows the distribution of training and validation data points for eight land cover classes, 

namely Built-up Land, Paddy Fields, Corn, Sugarcane, Citrus, Non-agricultural Vegetation, Shrubs, and 

Water Bodies. Overall, there were 122 training points and 51 validation points used in the classification 
process. The class with the highest number of training points is Non-agricultural Vegetation with 25 

points, while the classes with the least number of training points are Paddy Fields, Corn, and Water 
Bodies, each with only about 10-11 points. The split ratio between training and validation data ranges 

from 70:30 for almost all classes, which is a commonly used split in classification model development 
to ensure the model does not suffer from overfitting and can still be objectively validated. 
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RESULTS AND DISCUSSION 

Trainig Point and Validation Point 

 

 
(a) 

 
(b) 

Figure 1. Training points in the study area (a) and Validation points in the study area (b) 

Figure 1 shows the distribution of training and validation points obtained through the stratified 

random sampling method in the study area, where the training points (Figure a) are used to train the 
classification algorithm in recognizing the spectral and textural characteristics of each land cover class, 

while the validation points (Figure b) are arranged independently to ensure an objective and unbiased 
evaluation of classification accuracy. The point generation process begins with defining the boundaries 

of the study area and creating a reference layer based on high-resolution imagery or manual 
interpretation, which is then used as a reference in generating a proportional number of random sample 

points evenly distributed across each land cover class. Visualization of these points is done on the base 
image by assigning different colors to each class, so that their spatial distribution can be validated 

visually and potential overlap between training and validation points can be avoided. 

Fusion of Sentinel-1 and Sentinel-2 Imagery 
The integration of Sentinel-1 and Sentinel-2 datasets at the feature level significantly enhanced 

the ability to distinguish various land cover types within the study area. Sentinel-2 provided detailed 

spectral information through vegetation and built-up indices (NDVI, NDWI, NDBI), while Sentinel-1 
contributed backscatter intensity and texture features (VV, VH, VH/VV ratio) that are not affected by 

atmospheric conditions. 

 

Figure 2. result of sentinel-1 and sentinel-2 Fusion combined 

The fusion process allowed the generation of a composite image with enriched dimensionality, 
capturing both spectral and structural differences across land covers. This approach was particularly 

effective in fragmented agricultural landscapes, where single-source imagery often fails to differentiate 
between closely related crop types or between agricultural and non-agricultural vegetation. 
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Land Cover Classification Result 
The classification process was performed using Random Forest algorithm in the Google Earth 

Engine environment and it produced a thematic map containing seven land cover classes as shown in 
Figure 3. 

 

Figure 3. results from combined sentinel-1 and sentinel-2 crop classification 

Based on the classification result, it can be calculated the area of each land cover type as described in 
the table 2. 

Table 2. Land Cover Type and Area (ha) 

Class Land Cover Type Area (ha) 

1 Built-up Land 217.070 

2 Paddy Fields 464.514 

3 Corn 260.333 

4 Sugarcane 502.687 

5 Citrus 497.122 

6 Non-agricultural Vegetation 301.691 

7 Shrubs 517.962 

8 Water Bodies 94.090 

 Total 2855.469 

The data of land cover type area show that the largest land cover identified was shrubs (517.96 
ha), followed by sugarcane (502.69 ha), and citrus (497.12 ha). Paddy fields also covered a significant 
area (464.51 ha), reflecting their importance in the region. Corn occupied 260.33 ha, while built-up land 

and non-agricultural vegetation covered smaller areas. These results confirm the mixed and fragmented 
nature of agricultural use in Jember Regency. 

Classification Accuracy 

The accuracy assessment was conducted using 51 validation points. The confusion matrix 
revealed that overall classification accuracy reached 84.37%, indicating strong agreement between the 

classified map and reference data. 
Confusion matrix of the evaluation results of the land cover classification consisting of eight 

classes, namely Built-up Land, Rice Field, Corn, Sugarcane, Orange, Non-Agricultural Vegetation, 
Shrub, and Water Body, which were evaluated using a number of validation points. Based on the matrix, 
the diagonal values indicate the number of validation points that were correctly classified in each class, 

with the best accuracy achieved by the Built-up Land and Non-Agricultural Vegetation classes, both of 
which showed perfect classification results. However, notable misclassifications occurred in the Rice 

Field and Shrub classes, where Rice Field was not correctly classified at all, while Shrub showed 
predominant classification confusion especially with the Non-Agricultural Vegetation and Water Body 

classes. These errors indicate spectral overlaps between similar classes or possible limitations in the 
features used in the classification process. Therefore, the results of this confusion matrix confirm the 
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need for improved training data quality and feature enrichment, such as the addition of temporal 
vegetation indices or texture attributes, to improve classification accuracy in low-performing classes. 

The overall accuracy value obtained of 0.84375 or 84.375% indicates relatively good model 
performance, but the presence of several classes with low individual accuracies indicates the need for 

improved training data quality or the use of additional features such as temporal vegetation indices, 
image texture, or DEM data integration to reduce the level of confusion between spectrally similar 

classes. This matrix is an important indicator in assessing the reliability of the classification model and 
informs strategic recommendations for improving classification methods in land cover research in the 

study area. 
This result surpasses the accuracy reported by Dagne et al. (2023) who achieved 81% accuracy 

using similar radar-optical fusion and Random Forest classification techniques. The slightly higher 
accuracy in this study can be attributed to the use of additional indices (NDVI, NDWI, NDBI), optimized 
cloud masking, and the inclusion of structural backscatter features (VV, VH) from radar imagery. These 

enhancements likely improved class separability, particularly between vegetation and non-vegetation 
categories. Nevertheless, further improvements are recommended, such as integrating temporal 

composites, DEM variables, and texture features to address the remaining misclassifications among 
spectrally similar crop types. 

CONCLUSIONS 

This study demonstrates the effectiveness of integrating Sentinel-1 and Sentinel-2 satellite imagery 
for classifying crops in fragmented agricultural areas. The fusion of spectral indices from Sentinel-2 

(NDVI, NDWI, NDBI) with radar backscatter features from Sentinel-1 (VV, VH, VH/VV) enhanced the 
representation of both surface structure and vegetation characteristics. 

Using the Random Forest algorithm within the Google Earth Engine (GEE) platform, the 
classification achieved an overall accuracy of 84.37% across seven land cover classes. The fusion 

approach successfully distinguished between major crop types and non-agricultural covers, despite 
some spectral overlap between crops with similar growth stages. 

The findings highlight the potential of multi-source remote sensing for supporting precision 
agriculture, particularly in regions where land fragmentation and cloud cover limit traditional monitoring 
methods. Further improvements could be achieved by integrating additional features such as temporal 

composites, texture metrics, and topographic data to reduce class confusion and improve accuracy. 
This method provides a scalable and cost-effective solution for agricultural land monitoring, aiding 

policymakers and agricultural agencies in planning and managing land resources more sustainably. 
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