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ABSTRACT 
 

In this paper we model the total maintenance cost of a repairable system where the inter-maintenance times are 
modeled as discrete-time and continuous-time renewal processes. The maintenance cost is assumed to be a 
function of the lifetime of the system. We derive the probability distribution, including the mean and the 
variance, of the total maintenance cost. The results are presented in the form of generating functions and Laplace 
transforms that in general have to be inverted numerically. Some examples are presented in this paper. 
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INTRODUCTION 
 
Maintenance of a system is needed to keep the 
system works properly. The maintenance 
action of the system is immediately carried out 
after the failure of the system. We assume that 
the maintenance actions bring the system back 
to a state as good as new. In general the 
maintenance times are random, so the number 
of maintenance actions in some time interval is 
a random variable. We will model the 
maintenance times as renewal processes. This 
means that the inter-maintenance times are 
assumed to be independent and identically 
distributed (i.i.d.), non-negative random 
variables. 

Associate to each maintenance action the 
maintenance cost. This cost usually depends on 
the lifetime of the system, the shorter the 
lifetime the cheaper the cost. So the 
maintenance cost is also a random variable. Of 
course, as a special case, we can take a constant 
as the maintenance cost. Then a quantity that is 
interesting to be analyzed is the total 
maintenance cost over some time interval. 

Some authors have discussed this total 
maintenance cost. Van Noortwijk (1988) 
discussed optimal replacement decisions for 
systems under stochastic deterioration in 
unbounded time interval. Asymptotic property 
of the expected value of the total maintenance 
cost was discussed by Van Noortwijk &d 
Frangopol (2004). Van Noortwijk (2003) 
discussed asymptotic property of the variance 
of the total maintenance cost. In this paper we 
discuss probability distributions, including the 

mean and the variance, of the total maintenance 
cost in some bounded time interval. 
 This paper is organized as follows. In 
Section 2 we model the total maintenance cost 
where the inter-maintenance times are modeled 
as a discrete renewal process. Then in Section 3 
we discuss its probability distribution. The 
results are presented in the form of generating 
function. Section 4 deals with the total 
maintenance cost where the inter-maintenance 
times are modeled as a continuous renewal 
process. The probability distribution of the 
total maintenance cost is discussed in Section 5 
where the results are presented in the form of 
Laplace transforms. 

.  
RESULTS AND DISCUSSION 

 
Discrete-Time model for the total 
maintenance cost 
Let 0 = S0 < S1 < S2 < … be the times at which 
maintenance of a system take places. 
Maintenance is carried out such that the system 
condition as good as new. So we may assume 
that the times between consecutive 
maintenance  

Tj = Sj – Sj-1, j = 1, 2, 3, … 
as i.i.d., non-negative random variables. In this 
section the random variable Tj is assumed to be 
discrete non-negative integer valued random 
variables. The number of maintenance taken in 
the time interval [0,n], n = 0, 1, 2, ..., is  

N(n) = max{j ≥ 0 : Sj ≤ n}. 
The process (N(n), n = 0, 1, 2, ...) is called a 
discrete-time renewal process. Denote by Cj the 
maintenance cost associated with the event {Ti 
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= j}. Then the total maintenance cost in the 
time interval [0,n] can be represented by 
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We assume that the maintenance cost depend 
only on the age of system. In the next section 
we discuss the probability distribution of K(n). 
 
Probability distribution of the discrete-time 
model for the total maintenance cost 
Let for all j = 1, 2, ..., 

P(Tj = n) = pn,      n ≥ 1 

where pn ≥ 0 for all n ≥ 1 and 
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probability distribution of the total maintenance 
cost K(n) is given in the following theorem in 
the form of generating function. 
 
Theorem 1 
If the times between consecutive maintenance 
(Tj) are non-negative-integer valued, then 
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Proof: 
Using conditional expectation, the generating 
function of K(n) can be written as  
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It follows that 
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Adding 1 on both sides of this equation we get 
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or, equivalently,  
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The mean and the higher moments of K(n) 
can be obtained by taking derivatives with 
respect to z on both sides of equation (2) and 
then setting z = 1. 
 
Theorem 2 
Generating functions of the mean and the 
second moment of K(n) are as follows: 
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Proof:  
 
Recall the equation (2), that is, 

1 1( )

0
1

1
[ ]

1 j

n

jn j nK n n

C j
n jj

u p
E z u

z p u

∞ ∞
∞

= = +

∞
=

=

+
=

−

∑ ∑∑
∑

. 

If we take the derivative with respect to z on 
the left hand side of this equation and set z = 1, 

then we get 
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Replacing z by 1 in this equation we get 
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and part (a) of the theorem is proved. For part 
(b) take the second derivatives with respect to z 
on both sides of equation (2) and then set z = 1.       
● 
 
Example 1 
Suppose that the inter-maintenance times Ti, i = 
1, 2, 3, … are i.i.d. with probability 
distributions  
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and the maintenance cost Cj ≡ c >0. Using (2) 
we get 
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It follows that 
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where Y is binomially distributed with 
parameters n and p. So K(n) and cY have the 
same distribution. Since E(Y) = np and Var(Y) 
= np(1-p),   
E[K(n)] = npc     dan     Var[K(n)] = np(1-p)c2. 
As an illustration, if p = 0.25 and c = 1 then the 
distribution of K(10) is given in Table 1. 
 

Table 1. The probability distribution of K(10) 
when Tj is geometrically with 
parameter p = 0.25. 

k pk,n k pk,n 
0 0.0563 5 0.0584 
1 0.1877 6 0.0162 
2 0.2816 7 0.0031 
3 0.2503 8 0.0004 
4 0.1460 9 0.0000 

 
Example 2 
Now suppose that the inter-maintenance times 
Ti, i = 1, 2, 3, … are i.i.d. with shifted Poisson 
distributions given by 
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and the maintenance cost Cj ≡ c >0. Using (2) 
we get 
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To obtain the probability distributions pk,n of 
the total maintenance cost K(n) we have to 
invert the transform (5) numerically. An 
approximation formula for pk,n is  
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where G(v,u) denotes the right-hand side of (6), 
see Choudhury et al. (1994). As an example, 
when n = 10, c = 1, and λ = 3 we get the 
approximation distribustion of K(n) as shown 
in Table 2. 
 
Table 2.  The probability distribution of K(10) 

when Tj has shifted Poisson 
distribution with parameter λ = 3. 

k pk,n k pk,n 
0 0.0003 5 0.0027 
1 0.1517 6 0.0001 
2 0.5233 7 0.0000 
3 0.2781 8 0.0000 
4 0.0430 9 0.0000 
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From Table 2 we can calculate the 
approximation of the mean of K(10): 

9
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and  
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Of course we can also calculate the mean and 
the variance of K(n) by using (3) and (4).   
 
Continuous-Time model for the total 
maintenance cost 
In this section we model the maintenance times 
0 = S0 < S1 < S2 < … of the system as 
continuous random variables. Similar to the 
discrete case, it is assumed that the 
maintenance actions bring the system back to a 
state as good as new. So the inter-maintenance 
times   

Tj = Sj – Sj-1, j = 1, 2, 3, … 
 
can be modeled as i.i.d., non-negative 
continuous random variables. We will denote 
the cumulative distribution function of Tj by F, 
that is, 

F(t) = P(Tj < t ). 
 
The number of maintenance actions taken in 
the time interval [0, t], t > 0, is 
  

N(t) = max{j ≥ 0 : Sj ≤ t}. 
 
The process (N(t), t > 0) is called a continuous-
time renewal process.  

In this setting we denote by C(Tj) the 
maintenance cost associated with the inter-
maintenance time Tj, where C is some non-
negative measurable function. Then the total 
maintenance cost over the time interval [0, t] 
can be represented by 
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The probability distribution of K(t) is discussed 
in the next section. 
 
Probability distribution of the continuous-
time model for the total maintenance cost 
Since the maintenance times are modeled as 
continuous random variables, we will present 
the probability distribution of the total 

maintenance cost K(t) in in the form of Laplace 
transforms instead of generating functions.  

The model (7) can be considered as a 
modification of the instantaneous renewal 
reward process considered by Suyono (2002). 
In Suyono (2002) the probability distribution of 
the instantaneous renewal reward process was 
derived by using the theory of point processes. 
In the instantaneous renewal reward process we 
include the reward (or the cost in this paper) at 
the time interval [t – SN(t)] (the time from the 
last maintenance action up to time t), that is C(t 
– SN(t)). The model we are discussing does not 
include the cost over the time interval [t – SN(t)] 
because there is no maintenance action in that 
time interval.  

The probability distribution of K(t) is given 
in the following theorem in the form of double 
Laplace transform. 
 
Theorem 3 
 
For α, β > 0, 
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where F* is the Laplace-Stieltjes transform of 

F, that is, *
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Proof: 
 
Conditioning on the event {T1 = x} we get 
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where we have used the fact that K(t) = 0 if x > 
t. Taking Laplace transform of both sides of 
this equation we get 
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It follows that 
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The mean and the second moment of K(t) 
are given in the following theorem in the form 
of Laplace transforms. 
 
Theorem 4 
 
For β > 0, 
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Proof:  
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If we take the derivative with respect to α of 
right side of (8) set α = 0, then we get  
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so part (a) is proved. For part (b), take the 
second derivatives with respect to α on both 
sides of (8) and then set α = 0.       ● 

To calculate the probability density 
function and the statistical moments of the total 
maintenance cost generally we have to do 
numerical integration. We refer to Davis & 
Rabinowitz (1984) and Abate & Whitt (1992) 
for a numerical integration method. 
 
Example 3 
Suppose that the inter-maintenance times Ti, i = 
1, 2, 3, … are independent, gamma distributed 
with parameter n = 2 and  λ > 0. The 
probability density function of Ti is  

2( ) , 0, 0xf x xe xλλ λ−= > > . 
Suppose that the maintenance cost C(t) = t >0. 
Firstly we will calculate the expected total 
maintenance cost. Using (9) we get the Laplace 
transform of E[K(t)] as follows 
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Next we will find the probability distribution of 
the total maintenance cost. As an illustration 
we will set λ = 1.  
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Using (8) we get the double Laplace transform 
of K(t) as follows 
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Inverting this transform with respect to β we 
get 
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where fK(t)(x) denotes the probability density 
function of K(t). So 
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To find fK(t)(x) we have to invert this transform 
numerically. Denote the right-hand side of this 

equation by )(ˆ αf . We will use the following 
numerical inversion formula for inverting this 
transform: 
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2

A A
M

k

K t

k

e e
f x f A x f A i k t

x x
π

=

≈ + − +∑
 
where A is a constant (we take A = 5) and M is 
a large integer (we take M = 1000), see Abate 
and Whitt (1992). As an example if t = 20, the 
using this inversion formula we get the 
probability density function fK(t)(x) as shown in 
the following figure. 

 
 
Figure 1. The probability density function of 

K(20) when the inter-maintenance 
times have gamma distribution with 
parameters n = 2 and λ = 1, and the 
cost function C(t) = t. 

 
CONCLUSION 

 
In this paper we model the total maintenance 
cost of a repairable system where the inter-
maintenance times are modeled as discrete-
time and continuous-time renewal processes. 
The maintenance cost is assumed to be a 
function of the lifetime of the system.  

In the discrete-time model we derive the 
double generating function of the total 
maintenance cost from which we may calculate 
its probability distribution. We also derive the 
generating functions of the first and the second 
moments of the total maintenance cost. 
Basically we may derive the generating 
functions of the higher moments of the total 
maintenance cost, but the formula will be more 
complicated. Two examples are given where 
we model the inter-maintenance costs by a 
binomial random variable in the first example, 
and by a sifted Poisson random variable in the 
second example. By applying a numerical 
inversion method of generating functions we 
calculate the probability distributions of the 
total maintenance costs. In the continuous-time 
model we derive the double Laplace transform 
of the total maintenance cost. We also derive 
the Laplace transforms of the first and the 
second moments of the total maintenance cost. 
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The Laplace transforms of the higher moments 
can also be obtained but the formulae are too 
complicated. We give an example where the 
inter-maintenance costs is modeled by a 
gamma random variable. Using a numerical 
inversion method of Laplace transforms we 
calculate the probability density function of the 
total maintenance cost 
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