Waste Paper Hydrolysis Analysis with Sulfuric Acid Catalyst using Response Surface Methodology

Authors

  • Jabosar Ronggur Hamonangan Panjaitan Institut Teknologi Sumatera, Lampung, Indonesia
  • Conny Octaviani Institut Teknologi Sumatera, Lampung, Indonesia
  • Renata Margaretta Sinabutar Institut Teknologi Sumatera, Lampung, Indonesia

DOI:

https://doi.org/10.19184/jid.v26i2.46749

Keywords:

Acid hydrolysis, Paper waste, Response surface methodology

Abstract

Paper waste can cause environmental damage, so paper waste processing must be carried out. Paper waste which is a lignocellulosic compound can be processed with acid hydrolysis process to produce cellulose degradation products. In this research, waste paper hydrolysis was carried out using sulfuric acid with response surface methodology (RSM) optimization which the variables studied were mixing speed, time and S/L ratio. Based on the results of ANOVA test, it was known that mixing speed, time and solid liquid (S/L) ratio did not have a significant influence on %conversion. From the comparison of the independent variables, the mixing speed and time showed significantly influence %conversion compared to the S/L ratio. Higher %conversion was obtained from lower value of mixing speed, time and S/L ratio. In this study, 65% conversion was produced under operating conditions of 175 rpm stirring speed, 30 minutes reaction time, and 1:15 S/L ratio.

Downloads

Download data is not yet available.

References

Agustini, N. W. S., Hidhayati, N., & Wibisono, S. A. (2019). Effect of hydrolysis time and acid concentration on bioethanol production of microalga Scenedesmus sp. IOP Conference Series: Earth and Environmental Science, 308(1). https://doi.org/10.1088/1755-1315/308/1/012029.

Amenaghawon, N. A., Ogbeide, S. E., & Okieimen, C. O. (2015). Optimisation of Dilute Sulphuric Acid Hydrolysis of Waste Newspaper for High Yields of Fermentable Sugars. Nigerian Journal of Technology Research, 10(1).

Das, S., & Mishra, S. (2017). Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach. Journal of Environmental Chemical Engineering, 5(1), 588–600. https://doi.org/10.1016/j.jece.2016.12.034.

Gautam, S. P., Bundela, P. S., Pandey, A. K., Jamaluddin, J., Awasthi, M. K., & Sarsaiya, S. (2010). A review on systematic study of cellulose. Journal of Applied and Natural Science, 2(2), 330–343. https://doi.org/10.31018/jans.v2i2.143.

Jiang, X., Zhai, R., & Jin, M. (2021). Increased mixing intensity is not necessary for more efficient cellulose hydrolysis at high solid loading. Bioresource Technology, 329(January), 124911. https://doi.org/10.1016/j.biortech.2021.124911.

Jung, J. Y., Choi, M. S., & Yang, J. K. (2013). Optimization of concentrated acid hydrolysis of waste paper using response surface methodology. Journal of the Korean Wood Science and Technology, 41(2), 87–99. https://doi.org/10.5658/WOOD.2013.41.2.87.

Kolajo, T. E., & Onovae, J. E. (2023). Biochemical conversion of waste paper slurries into bioethanol. Scientific African, 20. https://doi.org/10.1016/j.sciaf.2023.e01703.

Kulkarni, S. J. (2017). Paper Waste Recycle and Its Sludge Reduction - Towards Waste and Cost Minimization. International Journal of Research & Review (Www.Gkpublication.In), 4(October), 19–24. www.ijrrjournal.com.

Kumar, A., Gamana, S., Pai, & Rebello, M. R. (2016). Conversion of Waste Paper into Useful Bio-Products. Research Journal Chemical Environmental Science, 4, 40–42.

Ma, S., Ma, H. jun, Hu, H. dong, & Ren, H. qiang. (2019). Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: Characteristics of dissolved organic matter and the key microorganisms. Water Research, 148, 359–367. https://doi.org/10.1016/j.watres.2018.10.058.

Ma, Z., Yang, Y., Chen, W. Q., Wang, P., Wang, C., Zhang, C., & Gan, J. (2021). Material Flow Patterns of the Global Waste Paper Trade and Potential Impacts of China’s Import Ban. Environmental Science and Technology, 55(13), 8492–8501. https://doi.org/10.1021/acs.est.1c00642.

Ngo, T. T. N., Le Tan, N. T., Nguyen, T. T. N., Vo, T. T. H., Tran, K. G. H., Le, N. P. T., Vo, T. P., Huynh, Q., & Nguyen, D. Q. (2023). Optimisation on the Hydrolysis Process of Paper Waste Sludge to Produce Bacterial Cellulose through Fermentation. Chemical Engineering Transactions, 106(August), 271–276. https://doi.org/10.3303/CET23106046.

Oramahi, H. A. (2016). Optimasi dengan RSM dan Rancangan Percobaan (Aplikasi dengan SPSS dan SAS). Gava Media, 1–5.

Ozola, Z. U., Vesere, R., Kalnins, S. N., & Blumberga, D. (2019). Paper Waste Recycling. Circular Economy Aspects. Environmental and Climate Technologies, 23(3), 260–273. https://doi.org/10.2478/rtuect-2019-0094.

Pivnenko, K., Eriksson, E., & Astrup, T. F. (2014). Waste paper for recycling: Overview and identification of potentially critical substances. Waste Management, 45, 134–142. https://doi.org/10.1016/j.wasman.2015.02.028.

Putra, M. I. D., Kaco, R., & Rasyid, R. A. (2023). The Effect of Organizational Culture and Work Discipline on Performance. Journal La Bisecoman, 4(6), 119–124. https://doi.org/10.37899/journallabisecoman.v4i6.835.

Rahman, M. H. A., Maidin, N. A., Wahid, M. K., Hussin, M. S. F., Ahmad, M. N., Ahmad, U. H., Osman, M. H., & Subramaniam, A. V. (2020). Product Design and Development of Waste Paper Plastering Mortars Machine. Journal of Physics: Conference Series, 1529(4), 2–10. https://doi.org/10.1088/1742-6596/1529/4/042036.

Ratnawati, S. E., Ekantari, N., Pradipta, R. W., & Paramita, B. L. (2018). The Application of Response Surface Methodology (RSM) on the Optimization of Catfish Bone Calcium Extraction. Jurnal Perikanan Universitas Gadjah Mada, 20(1), 41. https://doi.org/10.22146/jfs.35663.

Tadmourt, W., Khiari, K., Boulal, A., & Tarabet, L. (2020). Waste paper valorization for bioethanol production: Pretreatment and acid hydrolysis optimization. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1815908.

Tang, W., Wu, X., Huang, C., Ling, Z., Lai, C., & Yong, Q. (2021). Natural surfactant-aided dilute sulfuric acid pretreatment of waste wheat straw to enhance enzymatic hydrolysis efficiency. Bioresource Technology, 324(December 2020), 124651. https://doi.org/10.1016/j.biortech.2020.124651.

Wibowo, I. D., Purwanto, P., & Suherman, S. (2020). Solid waste management in the paper industry. E3S Web of Conferences, 202, 1–7. https://doi.org/10.1051/e3sconf/202020206026

Xing, L., Gu, J., Zhang, W., Tu, D., & Hu, C. (2018). Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydrate Polymers, 192, 184–192. https://doi.org/10.1016/j.carbpol.2018.03.042.

Xu, H., Feng, L., Wu, G., & Zhang, Q. (2021). Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models. Renewable and Sustainable Energy Reviews, 149(June), 111402. https://doi.org/10.1016/j.rser.2021.111402.

Zhang, H., Chen, Y., Wang, S., Ma, L., Yu, Y., Dai, H., & Zhang, Y. (2020). Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydrate Polymers, 238(2), 116180. https://doi.org/10.1016/j.carbpol.2020.116180.

Downloads

Published

2025-07-29

Issue

Section

General