Crops Classification in Fragmented Agricultural Land Using Integrated Radar and Optical Remote Sensing Satellite Data
DOI:
https://doi.org/10.19184/jid.v26i2.53691Keywords:
Crop classification; Fragmented agricultural land; Radar-optical fusion; Remote sensing; Google Earth EngineAbstract
This study aims to classify crops on fragmented agricultural land by integrating radar (Sentinel-1) and optical (Sentinel-2) satellite remote sensing data. The research responds to the pressing issue of decreasing agricultural land in Jember Regency due to land conversion, which threatens food security. Feature-level fusion is applied to combine spectral indices (NDVI, NDWI, NDBI) from Sentinel-2 and radar backscatter characteristics (VV, VH) from Sentinel-1. Classification was performed using the Random Forest algorithm in the Google Earth Engine (GEE) platform. The results showed that the combination of both datasets provided high overall accuracy (81.58%) in classifying eight land cover types including agricultural crops such as paddy, corn, sugarcane, and citrus. This integration enables better monitoring of complex agricultural landscapes, offering a practical tool for sustainable land management.
Downloads
References
Ansari, M. N. 2020. Effectiveness on The Implementation of Regulation Sustainable Food Agriculture in Sinjai District, Makasar, Program Studi Magister Kenotariatan Fakultas Hukum, Universitas Hasanuddin.
Carlier, A. 2000. The future of earth observation is in smallsats. Air & Space Europe 2 (4): 42-44.
Chen, J., & Z. Zhang. 2023. An improved fusion of Landsat-7/8, Sentinel-2, and Sentinel-1 data for monitoring alfalfa: Implications for crop remote sensing. International Journal of Applied Earth Observation and Geoinformation 124: 103533.
Dagne, S. S., H. H. Hirpha, A. T. Tekoye, Y. B. Dessie, & A. A. Endeshaw. 2023. Fusion of sentinel-1 SAR and sentinel-2 MSI data for accurate Urban land use-land cover classification in Gondar City, Ethiopia. Environmental Systems Research 12 (1): 40.
Defourny, P., S. Bontemps, N. Bellemans, C. Cara, G. Dedieu, E. Guzzonato, O. Hagolle, J. Inglada, L. Nicola, T. Rabaute, M. Savinaud, C. Udroiu, S. Valero, A. Bégué, J.-F. Dejoux, A. El Harti, J. Ezzahar, N. Kussul, K. Labbassi, V. Lebourgeois, Z. Miao, T. Newby, A. Nyamugama, N. Salh, A. Shelestov, V. Simonneaux, P. S. Traore, S. S. Traore, & B. Koetz. 2019. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment 221: 551-568.
Eramudadi, D., & C. A. Rokhmana. 2024. Ekstraksi Permukiman dari Kombinasi Citra Sentinel-2 dan Sentinel-1 dengan Pendekatan Object-Based Image Analysis. Journal of Geospatial Information Science and Engineering (JGISE) 7 (1): 71-80.
89
Filipponi, F. 2019. Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. . 18 (1): 11.
Mayele, J. M., J. B. Kolleh, & J. E. Saburi. 2024. The Impacts and Causes of Land Fragmentation on Farm Productivity: Case Review of East African Countries. Open Journal of Ecology 14: 455-482.
Pramesthy, A., I. W. Yasa, F. Setyawan, Y. Adiwibowo, & F. P. Manggala. 2023. Dampak Alih Fungsi Lahan Sawah Dilindungi (LSD) terhadap Ketahanan Pangan Pedesaan di Kabupaten Jember. Jurnal Hukum Inicio L:egis 4 (2): 167-181.
Rondhi, M., P. A. Pratiwi, V. T. Handini, A. F. Sunartomo, & S. A. Budiman. 2018. Agricultural Land Conversion, Land Economic Value, and Sustainable Agriculture: A Case Study in East Java, Indonesia. Land 7 (4): 148.
Sklenicka, P. 2016. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 57: 694-701.
Soedarto, T., & R. K. Ainiyah. 2022. Teknologi Pertanian Menjadi Petani Inovatif 5.0: Transisi Menuju Pertanian Modern. Ponorogo: Uwais Inspirasi Indonesia:
Sonobe, R., Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, & K.-i. Mochizuki. 2017. Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience & Remote Sensing 54 (6): 918-938.
Sunartomo, A. F. 2015. Development of Agricultural Land Conversion in District of Jember. Agriekonomika 4 (1): 22-36.
Wang, X., S. Fang, Y. Yang, J. Du, & H. Wu. 2023. A New Method for Crop Type Mapping at the Regional Scale Using Multi-Source and Multi-Temporal Sentinel Imagery. Remote Sensing 15
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sukma Adi Darmawan, Bowo Eko Cahyono, Agus Suprianto, Inas Alfiyatul Umniyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.